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On the Elements. Page 90, exercises 6, 7, 14, 17, 19.

Exercise 6. Prove Proposition I.32, that the three interior
angles of any triangle are equal to two right angles. Show
that the proof depends on I.29 and therefore on postulate 5.

Here’s Euclid’s proof. Yours may be different, but any
proof must rely somehow on the parallel postulate because
it’s known that in hyperbolic geometry Prop. I.32 is false.

First note that proposition I.29 says that when a line
crosses two other lines making the alternate interior angles
equal, then corresponding angles areequal and the interior
angles on the same side of the line are supplementary (add
up to two right angles).

Let ABC be the triangle. Extend BC, and draw CE
parallel to AB. That’s the construction in the previous
proposition I.31. Then by I.29, angle B equals angle ECD,
and angle A equals angle ACE. Thus the interior angles of
the triangle sum to angle CBA plus angle ECD plus an-
gle ACE. But that’s a straight angle, the sum of two right
angles. q.e.d.

Comment. In hyperbolic geometry, one of the noneu-
clidean geometries, the parallel postulate is false. Given
a line and a point not on that line, unlike Euclidean ge-
ometry in which there is exactly one line through the given
point that doesn’t meet the given line, in hyperbolic geom-
etry there are infinitely many lines through the point that
don’t meet the given line.

Also, whereas in Euclidean geometry the angle sum of a
triangle equals exactly two right triangles, in hyperbolic ge-
ometry the angle sum is always less than two right triangles.
In fact, the amount that the angle sum is less than two right
triangles, called the deficiency of triangle is proportional to
the area of the triangle. So for really big triangles, the angle
sum is nearly 0.

Exercise 7. Solve the (modified) problem of Proposition
I.44, to apply a given straight line AB a rectangle equal to
a given rectangle c. Use the supplied figure.

The given rectangle with area c is the rectangle BEFG
and the given straight line is AB where ABE is a straight
line.

We’re to find a rectangle ABML one side of which is AB
and the area is also equal to c.

Here’s Euclid’s proof in Book I. It just uses elementary
concepts from that book. After the given figure has been
constructed, you can see three pairs of congruent triangles,
namely, large triangles HFD and HLD, medium triangles
HAB and HGD, and small triangles BED and BMD. But
each of the rectangles BEFG and ABML are equal to one
of the large triangles minus the sum of one of each of the
small and medium triangles. Therefore the rectangles are
equal. q.e.d.

There’s a shorter proof involving similar triangles that Eu-
clid didn’t give because similar triangles weren’t introduced
until Book VI, the book after Book V which covered the
theory of proportions.

For this proof, note that that the triangles HAB and
BMD are similar, so we get the proportion

HA : AB = BM : MD.

Cross multiplying, we get HA ·MD = AB ·BM . But HA ·
MD, which is equal to GB · BE, is the area of one of the
rectangles, while AB ·BM is the area of the other rectangles.
Therefore the rectangles are equal. q.e.d.

Exercise 14. Prove Proposition III.31, that the angle in
a semicircle is a right triangle.

By the way, this is sometimes called Thales’ theorem.
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Here’s how Euclid did it. Let the triangle be ABC with
BC the diameter of the semicircle. Let D be the midpoint
of BC which is the center of the circle. Draw AD to get two
triangles ADC and ADB.

These two triangles are isosceles triangles since in each
case two of the sides are radii. Therefore angle BAC, which
equals the sum of the angles BAD and CAD, also equals
the sum of the angles at B and C. That is, in the original
triangle ABC we have the angle at A is the sum of the other
two angles. But the sum of all three angles is 2 right angles
(i.e. 180◦), and A is half of that, so it’s a right angle. q.e.d.

There’s a shorter proof that Euclid didn’t give because he
didn’t accept straight angles as being angles. The straight
angle BDC at the center of the circle cuts off the other half of
the semicircle, so the angle BAC at the circumference is half
of that, and half of a straight angle is a right angle. q.e.d.

Exercise 17. Given that a pentagon and an equilateral
triangle can be inscribed in a circle, show how to inscribe a
regular 15-gon in a circle.

See proposition IV.16.

Here’s what Euclid did.Construct the equilateral triangle
and the regular pentagon in the circle. Let AC be one side
of the triangle and AB one side of the pentagon. Bisect the
arc BC at E. Then BE and EC are two adjacent sides for
the 15-gon. Just repeatedly cut off arcs of that size from the
circle to get the rest of the 13 sides.

A more symmetric way is to place the pentagon in the
circle, then at each of the 5 vertices of it, place a triangle
with one of its vertices at that vertex. The 15 points on the
circle are the 15 points of the regular 15-gon.

Exercise 19. Use the Euclidean algorithm to find the
greatest common divisor of 963 and 657; of 2689 and 4001.

See proposition VII.2.
There are two versions of this algorithm. The first only

uses subtraction. For it, repeatedly subtract the small num-
ber from the larger if you only want to use the operation
of subtraction. Stop when the two numbers you get are the
same.

For 963 and 657, subtract 657 from 964 to get 306.
For 657 and 306, subtract 306 twice from 657 to get 45.
For 306 and 45, subtract 45 from 306 six times to get 36.
For 45 and 36, subtract to get 9
For 36 and 9, subtract three times to get 9. Since both

numbers are 9, we’ve shown that 9 is the GCD of 963 and
657.

The other version of the algorithm involves division. Re-
peatedly divide the smaller number into the larger and re-
place the larger by the remainder. Stop when there is no
remainder.

For 4001 and 2689, divide 2689 into 4001 giving quotient
1 and remainder 1312.

For 2689 and 1312, divide 1312 into 2689 giving quotient
2 and remainder 65.

For 1312 and 65, divide 65 into 1312 giving quotient 20
and remainder 12.

For 65 and 12, divide 12 into 65 giving quotient 5 and
remainder 2.

For 5 and 2, divide 2 into 5 giving quotient 2 and remain-
der 1.

Stop since 1 divides 2 with no remainder. Therefore, 1 is
the GCD of 4001 and 2689. That means they’re relatively
prime.
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