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Abstract

We prove exponentially small upper bounds on the correlation between parity and
quadratic polynomials mod 3. One corollary of this is that in order to compute parity,
circuits consisting of a threshold gate at the top, mod 3 gates in the middle, and AND
gates of fan-in two at the inputs must be of size 2Ω(n). This is the first result of this type for
general mod 3 subcircuits with ANDs of fan-in greater than 1. This yields an exponential
improvement over a long-standing result of Smolensky, answering a question recently posed
by Alon and Beigel. The proof uses a novel inductive estimate of the relevant exponential
sums introduced by Cai, Green and Thierauf. The exponential sum and correlation bounds
presented here are tight.

1 Introduction

After a flurry of exciting results in the 80’s [FSS], [Yao 85], [Cai], [Has], [Raz], [Sm], circuit
lower bounds have been few and far between in recent years. One reason for this is that some of
the seemingly simplest problems on the “frontier” (e.g., to obtain lower bounds for ACC [Bar],
or even just depth-3 circuits with Mod6 gates) have proved to be deceptively difficult. While
some of the difficulties are quite formidable (e.g., the natural proof [RR] barrier presented by
TC0), there are still very good reasons to continue the effort for (presumably) less powerful
circuits. Paramount among these reasons is to develop new lower bound techniques, especially
those that show deep connections with powerful tools from other areas of mathematics. This
paper represents another step in this direction.

Our chief interest in this paper is in circuits with a threshold or majority gate at the top,
MOD gates in the middle and AND gates at the bottom (attached to the inputs). Following
Alon and Beigel [AB], when the fan-in of the bottom AND gates is bounded by f(n), we refer
to these as “MAJ ◦ MOD ◦ ANDf(n)” circuits. These circuits are important for a number of
reasons. Recall, for example, that they are very powerful. Allender [Al], using ideas from
Toda’s Theorem [Tod], showed that all of AC0 can be simulated by quasipolynomial (2logO(1) n)
size MAJ◦MOD2◦AND(logn)O(1) circuits. It is well-known (e.g., [Has]) that both parity and the
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majority function require exponential-size AC0-type circuits, so MAJ ◦MOD2 ◦ AND(logn)O(1)

circuits are strictly more complex than AC0. On the other hand, Yao [Yao 90] has shown
(again, using many of the ideas and some of the methods of Toda’s Theorem) that depth-3
threshold circuits of quasipolynomial size can simulate ACC. In fact, one can do this simulation
with apparently weaker circuit models [BT], [GKRST] that still are at least as powerful as
quasipolynomial size MAJ ◦MOD2 ◦ AND(logn)O(1) . However, the relationship between MAJ ◦
MOD2 ◦ AND(logn)O(1) circuits and ACC remains unresolved. This is the central motivating
problem we address. (See [Gr99] and [Gr00] for somewhat different perspectives. )

This problem shares some of the difficulties of finding lower bounds for depth 2 and depth
3 threshold circuits. Among the strongest lower bounds of this type is the result of H̊astad
and Goldmann [HG] that says that the generalized inner-product function requires exponential
size MAJ ◦ MAJ ◦ ANDO((1/2−ε) logn) circuits. This implies, of course, a similar lower bound
against MAJ◦MOD2◦AND(1/2−ε) logn circuits computing generalized inner product. We suspect
that even the simpler MOD3 function cannot be computed by such circuits, however, and the
technique underlying the H̊astad-Goldmann result is unlikely to resolve the central problem
via this function (more detail is given below). A number of authors (e.g., [BM], [Gro], [KP])
have considered other depth-2 and depth-3 combinations of MAJ and MOD’s and AND’s, but
to date little progress has been made on the combination with MOD’s in the middle layer.

Another important reason to investigate MAJ ◦ MODm ◦ AND circuits is that, by the ε-
discriminator method of Hajnal et al. [HMPST], lower bounds for such circuits are equivalent
to upper bounds on the ability of MODm◦AND circuits to approximate given Boolean functions.
This problem is interesting in its own right and a resolution may lead to a deeper understanding
of ACC circuits. For example, there are still gaps in our understanding of the classes ACC(p)
where p is prime. Smolensky [Sm] showed that if p is an odd prime, then ACC(p)-type circuits
of “small” size (those that are below a certain exponential size) can agree with parity for at
most a fraction 1/2 + no(1)/

√
n of the input settings. By contrast, H̊astad and Boppana [Has]

showed that small AC0-type circuits can agree with parity for at most a fraction 1/2 + 2−n
Ω(1)

of the input settings. Do ACC(p) circuits really give better approximations to parity, or is it
possible to sharpen Smolensky’s bound so that it is exponentially close to 1/2 as well?

Smolensky’s theorem [Sm] implies that if p is an odd prime, then parity requires MAJ ◦
MODp◦AND(logn)O(1) circuits of size

√
n/(2no(1)). Goldmann [Go] considered the case in which

there are no AND gates on the bottom (i.e., MAJ◦MOD circuits), and showed that if q is a prime
not dividing m, then the MODq function requires 2Ω(n) size MAJ ◦MODm circuits. Cai, Green
and Thierauf [CGT], and later (in a more general setting) Green [Gr99], considered the case in
which the MOD◦AND subcircuits compute symmetric functions. They showed that the MODq

function requires 2n
Ω(1)

size MAJ ◦MODm ◦ AND(logn)O(1) circuits, provided the MODm ◦ AND
subcircuits compute symmetric functions. Recently, Alon and Beigel [AB] took a step toward
extending this to the non-symmetric case. They did this by reducing the non-symmetric case
to the symmetric case via a Ramsey-Theoretic argument. The result was that MODq requires
2(logn)Ω(1)

size MAJ ◦MODm ◦ AND2 circuits, and ω(1) size MAJ ◦MODm ◦ ANDO(1) circuits.
It seems unlikely, however, that Ramsey-Theoretic arguments will yield appreciably stronger
results. Also note that Smolensky’s technique [Sm] (which only works when m is a prime
power) does not imply a stronger lower bound than

√
n/(2no(1)) even if we restrict the fan-in

on the AND-gates to be 2 and m to be 3.
In this paper, we introduce a technique that improves the bound exponentially in this case.
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We extend Smolensky’s bound when the AND-gates have fan-in 2 to an exponential lower
bound in the case that q = 2 and m = 3: we show that parity requires MAJ ◦MOD3 ◦ AND2

circuits of size 2Ω(n) (see Corollary 3.9). As in previous work, we accomplish this by putting an
exponentially small upper bound on the ability of MOD3 ◦ AND2 circuits to approximate the
parity function: such circuits can equal the parity function for at best a fraction 1

2 + 2−Ω(n) of
all input settings (see Corollary 3.8). This answers a special case (q = 2, m = 3, AND fan-in
2) of a question posed recently by Alon and Beigel [AB]. It represents the first extension of
Smolensky’s [Sm] non-approximability results for parity by quadratic polynomials mod 3 to a
value that is exponentially close to 1/2.

Note that for composite m, the lower bound of Alon and Beigel [AB] remains the best that
is known. Likewise, if m is any prime power other than the number 3, Smolensky’s bound [Sm]
remains the best known.

Our approach is very different from that of [Sm] or [AB]. We directly evaluate the ex-
ponential sums originally introduced by Cai et al. [CGT]. In [CGT] it was shown that the
correlation between parity and a MOD3 ◦ AND circuit can be written as an exponential sum
(also variously known as a character sum or a generalized Gaussian sum). Evaluations of such
sums were also instrumental in the communication complexity lower bound of Babai, Nisan
and Szegedy [BNS] on which the H̊astad-Goldmann [HG] result is based. Character sums,
which originated with Gauss in the study of cyclotomic fields and quadratic reciprocity, have
been intensively studied in the number theoretic literature (see, e.g., [LN] and [Sch]). Here we
develop a new technique for evaluating the type of sums that arise in computing correlations.
The Cauchy-Schwarz method used to great effect in [BNS], while very powerful, appears not
to be sufficiently refined for our purposes. Instead we observe some very specific symmetry
properties of the sum that can be exploited, via the triangle inequality and various identities
involving the additive and multiplicative characters over Z3, to obtain accurate estimates in-
ductively. The power of these simple symmetry arguments is a bit surprising. In fact, our
bounds on the exponential sum as well as the correlation itself are the best possible.

The organization of the paper is as follows. In section 2, the terminology and notation for
the paper is established, and we review how the problem of computing the circuit lower bounds
reduces to the problem of computing upper bounds on the correlation [HMPST]. In turn, we
also review how the latter reduces to the evaluation of an exponential sum [CGT]. In section 3,
the evaluation of the exponential sum is presented, along with the main results. Tight upper
bounds on the correlation itself are also given; while the main results do not require this, it
underscores the exactness of the technique. In section 4, we address the question as to whether
symmetric polynomials yield the highest correlation, which was posed in [AB]. Finally, it is
curious that the technique of this paper at present appears to work only for parity versus
MOD3, and even then, only in the quadratic case. We explain and discuss these issues in
section 5.

2 Preliminaries

A MODm gate takes n Boolean inputs x1, ..., xn and outputs 1 if
∑n
i=1 xi 6≡ 0 (mod m), and

0 otherwise. A MAJ gate also takes n inputs and outputs 1 iff more than half of the inputs
are 1. Our results also apply to general threshold gates with weights bounded polynomially in
the size of the input.
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We adopt the convention that an n-tuple such as (x1, ..., xn) is represented as a vector x.
Thus x ∈ {0, 1}n denotes that x = (x1, ..., xn) is an n-tuple of Boolean values.

As in [AB], if G is a type of Boolean gate and C a class of circuits, G ◦ C denotes the class
of circuits with C-type circuits serving as inputs to G-type gates. In measuring the size of such
circuits, the size of the C-type subcircuits is to be regarded as a function of the number of
inputs to the global G ◦ C circuit.

The correlation Cn(f1, f2) between two Boolean functions f1, f2 : {0, 1}n → {0, 1} is the
number of agreements between f1 and f2 minus the number of disagreements, normalized by
2−n:

Cn(f1, f2) =
1
2n

∑
x∈{0,1}n

(−1)f1(x)+f2(x). (1)

The ε-discriminator lemma of Hajnal et al. [HMPST] shows that the problem of proving
lower bounds for a Boolean function f against circuits with a MAJ gate over subcircuits of a
certain type, reduces to the problem of obtaining upper bounds on the correlation between f
and one of the subcircuits. We use the lemma in the following form.

Lemma 2.1. Let T be a threshold circuit consisting of a majority gate over subcircuits
c1, ..., cs, each taking up to n inputs. Thus, T outputs 1 on input x ∈ {0, 1}n if and only
if
∑s
i=1 ci(x) > s/2. Let T compute the Boolean function f : {0, 1}n → {0, 1}. Define the

correlation Cn(f, ci) as in equation (1). If |Cn(f, ci)| ≤ ε for all 1 ≤ i ≤ s, then s ≥ ε−1.

Let Zm denote the ring of integers mod m.
A MODm ◦ AND circuit is one consisting of a MODm gate over AND gates attached to

the inputs. It is clear that for any MODm ◦ AND circuit over the inputs x1, ..., xn, there is a
polynomial t ∈ Zm[x1, ..., xn] such that the circuit outputs 1 iff t(x1, ..., xn) 6≡ 0 (mod m).
We call t the defining polynomial of the circuit.

It should generally be understandable from the context when quantities (e.g.) x, y are
meant to be in Zm, or if they are meant to be reduced mod m, for some m. In this case, we
replace the notation x ≡ y (mod m) and x 6≡ y (mod m) by x = y and x 6= y, respectively.

Let F be a finite field. A multiplicative character is a homomorphism χ : F∗ → C from
the multiplicative group F∗ = F − {0} to the complex numbers. By definition, for nontrivial
characters one extends the domain of χ to include all of F by taking χ(0) = 0. (For the
trivial character ε(F∗) = 1, we take ε(0) = 1.) When F = Z3 (which will be true for most of
this paper), there are only three field elements, which we write as {0, 1,−1}, and the unique
nontrivial χ takes a particularly simple form, namely, χ(0) = 0, χ(1) = 1, and χ(−1) = −1.
Since χ2 = 1 (when restricted to the domain Z∗3), we refer to it as the quadratic character of
Z3.

An additive character is a homomorphism ψ from the additive group of F to the complex
numbers. In the case of Z3, we use the additive character ψ(x) = ωx, where x ∈ Z3, and ω
is the primitive complex cube root of unity e2πi/3. Note that ω2 = ω, where ω denotes the
complex conjugate of ω. Also recall the fact that, for k ∈ Z3,

1 + ωk + ωk =

{
3 if k = 0
0 otherwise.

(2)

(Refer to [LN] for more information regarding characters.)
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In [CGT], when f1 is the parity function MOD2 and f2 is the function computed by a
MOD3 ◦AND circuit, the correlation Cn(f1, f2) is written as an exponential sum involving the
multiplicative and additive characters. Denote the function computed by the MOD3 ◦ AND
circuit as f , and suppose the defining polynomial of f is r. Then,

Cn(MOD2, f) =
4

3 · 2n
Re

∑
x∈{0,1}n

(−1)
∑n

j=1
xjωr(x),

where “Re” denotes the real part. Again as in [CGT], making the change of variable xi =
(1/2)(1 − yi) where yi ∈ {1,−1}, the polynomial r becomes a new polynomial s in the yi
variables, of the same degree:

Cn(MOD2, f) =
4

3 · 2n
Re

∑
y∈Zn

3

χ(
n∏
i=1

yi)ωs(y). (3)

Note that the sum can range over all of Z3 rather than just {1,−1}, because the relation
χ(0) = 0 eliminates any terms with any yi = 0. Finally note that the polynomials r and s are
multilinear.

Now if the AND’s in the original MOD3◦AND circuit have fan-in at most 2, then the defining
polynomial r is quadratic. Hence s is quadratic as well. We break up s into a homogeneous
quadratic piece (i.e., a quadratic form) t(y), and a linear form k · y:

t(y) =
n−1∑
i=1

n∑
j=i+1

kijyiyj ,

k · y =
n∑
i=1

kiyi,

where for all 1 ≤ i, j ≤ n, the coefficients kij , ki ∈ Z3. There may also be a constant term
c ∈ Z3. Thus, with this notation established, our task is to find an upper bound on correlations
of the following form:

C(t,k, c, n) =
4
3

Re(S(t,k, n)ωc), (4)

where S(t,k, n) is of the form:

S(t,k, n) =
1
2n

∑
y∈Zn

3

χ(
n∏
i=1

yi)ωt(y)+k·y. (5)

The reason for not including the constant c in the definition of S(t,k, n) is that, as in [CGT],
[Gr99], we prove exponentially small upper bounds on the norm of S(t,k, n). This immediately
implies exponentially small upper bounds on the real part of S(t,k, n)ωc, and hence (via
equation (4)) on the correlation.

The notation S(t,k, n) will always mean that t is a quadratic form and that k ∈ Zn3 .
Sometimes the vector k will consist entirely of the 0 element of Z3, in which case we use the
boldface notation 0. Similar conventions hold for C(t,k, c, n).
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3 Evaluation of the Exponential Sum

We now obtain tight upper bounds on the norm of the exponential sum S(t,k, n) as defined
at the end of the previous section. Note that since by definition χ(0) = 0, we can also write S
as,

S(t,k, n) =
1
2n

∑
y∈{1,−1}n

(
n∏
i=1

yi)ωt(y)+k·y. (6)

It will be convenient to work with this form, although we will ultimately return to the original
(equation (5)). For typographical reasons it will often be convenient to omit the explicit range
of summation of a vector y. In this case a sum over y where y is of length n is a sum over all
y ∈ {1,−1}n.

Our main theorem is,

Theorem 3.1. For all n, the exponential sum S(t,k, n) obeys,

|S(t,k, n)| ≤
(√

3
2

)dn/2e
.

Furthermore, this upper bound can be achieved.

The proof of this theorem, which proceeds by induction on n, rests on a number of relations,
given in the following lemmas. We start by noting some useful identities involving the additive
and multiplicative characters.

Lemma 3.2. Let a, b ∈ Z3. Then the following identities hold:
(i) ωa + ω−a = ωa

2
+ ω−a

2
.

(ii) ωa − ω−a = (ω − ω)χ(a).
(iii) χ(1 + a)ωb + χ(1− a)ω−b = ω(a−b)2

+ ω−(a+b)2
.

Proof: Identities (i) and (ii) can be easily seen by plugging in the values {0, 1,−1} for a.
One can verify identity (iii) in a similar way, but it is perhaps more satisfying to see how to
derive it from (i) and (ii) algebraically. For notational convenience, let χ± = χ(1−a)±χ(1+a).
First observe that, by identity (ii),

χ+ =
1

(ω − ω)
(ω1−a − ω−1+a + ω1+a − ω−1−a)

=
1

(ω − ω)
(
ω(ωa + ω−a)− ω(ωa + ω−a)

)
= ωa + ω−a.

Similarly,

χ− =
1

(ω − ω)

(
ω1−a − ω−1+a − ω1+a + ω−1−a

)
=

1
(ω − ω)

(
ω−a(ω + ω)− ωa(ω + ω)

)
=

ωa − ω−a

(ω − ω)
= χ(a),
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where we used the fact that ω+ω = −1 (see equation (2)). Solving the two resulting equations,

χ(1− a) + χ(1 + a) = ωa + ω−a

χ(1− a)− χ(1 + a) = χ(a)

for χ(1− a) and χ(1 + a), we obtain,

χ(1− a) =
1
2

(ωa + ω−a + χ(a))

χ(1 + a) =
1
2

(ωa + ω−a − χ(a)).

Let A denote the quantity χ(1 + a)ωb + χ(1 − a)ω−b. Then, making free use of identities (i)
and (ii) where necessary, and the fact that χ(a)χ(b) = χ(ab), we find,

A =
1
2

[(ωa + ω−a − χ(a))ωb + (ωa + ω−a + χ(a))ω−b]

=
1
2

[ωa+b + ω−a+b + ωa−b + ω−a−b − χ(a)(ωb − ω−b)]

=
1
2

[ω(a+b)2
+ ω−(a+b)2

+ ω(a−b)2
+ ω−(a−b)2 − (ω − ω)χ(a)χ(b)]

=
1
2

[ω(a+b)2
+ ω−(a+b)2

+ ω(a−b)2
+ ω−(a−b)2 − (ω − ω)χ(ab)]

=
1
2

[ω(a+b)2
+ ω−(a+b)2

+ ω(a−b)2
+ ω−(a−b)2 − (ωab − ω−ab)].

Expanding the expressions in the exponent (i.e., (a+ b)2 and (a− b)2) yields,

A =
1
2

[ωab(−1 + ωa
2+b2 + ω−a

2−b2) + ω−ab(1 + ωa
2+b2 + ω−a

2−b2)].

Now by equation (2), 1 + ωk + ω−k = 0 iff k 6= 0, and note that in Z3, a = b = 0 exactly when
a2 + b2 = 0. Therefore, the quantity 1 + ωa

2+b2 + ω−a
2−b2 is nonzero iff a = b = 0. The factor

multiplying it (ω−ab) can thus be replaced with ωab. Thus,

A =
1
2

[ωab(1 + ωa
2+b2 + ω−a

2−b2) + ωab(−1 + ωa
2+b2 + ω−a

2−b2)]

= ωab(ωa
2+b2 + ω−a

2−b2),

from which (iii) follows immediately.

We next give a simple but very useful symmetry property of S(t,k, n).

Lemma 3.3. For any n,

S(t,k, n) = (−1)nS(t,−k, n).

Proof: Let n be even. In the formula (6) for S(t,k, n), make the change of variable yi 7→ −yi.
Then, since n is even and the terms in t(y) are all of even degree, under this change of variable∏n
i=1 yi 7→

∏n
i=1 yi, and t(y) 7→ t(y), whereas k · y 7→ −k · y. Hence S(t,k, n) = S(t,−k, n).
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On the other hand, if n is odd, under the same change of variable,
∏n
i=1 yi 7→ −

∏n
i=1 yi,

while t(k) and k · y transform as they did before. Hence S(t,k, n) = −S(t,−k, n).

Observe that, as a consequence of Lemma 3.3, if n is odd then S(t,0, n) = 0. Hence for odd
n, a MOD3 ◦ AND circuit whose defining polynomial expressed in terms of the yi variables is
quadratic and homogeneous, has zero correlation with parity. In fact, the proof of Lemma 3.3
says that the resulting polynomial need not be quadratic; any polynomial all of whose terms
are of even degree has zero correlation with parity if n is odd.

Lemma 3.4. If n is even, there exists a quadratic form t′ ∈ Z3[y1, ..., yn] such that,

|S(t,k, n)| ≤ |S(t′,0, n)|.

Proof: By Lemma 3.3,

S(t,k, n) = S(t,−k, n)

=
1
2

(S(t,k, n) + S(t,−k, n))

=
1

2n+1

∑
y

(
n∏
i=1

yi)ωt(y)
(
ωk·y + ω−k·y

)
.

Using Lemma 3.2(i) with a = k · y, the last equality implies,

S(t,k, n) =
1

2n+1

∑
y

(
n∏
i=1

yi)ωt(y)
(
ω(k·y)2

+ ω−(k·y)2
)
.

Now since y2
i = 1 for all i, we have that (k ·y)2 = tk(y) + c where tk is a quadratic form and c

is a constant (independent of y). Setting t+(y) = t(y) + tk(y) and t−(y) = t(y)− tk(y), note
that both t+ and t− are quadratic forms. We thus have,

S(t,k, n) =
1
2

(ωcS(t+,0, n) + ω−cS(t−,0, n)).

Hence, by the triangle inequality,

|S(t,k, n)| ≤ 1
2

(|S(t+,0, n)|+ |S(t−,0, n)|).

Taking t′ to be t+ or t−, depending on which of |S(t+,0, n)| or |S(t−,0, n)| is the maximum,
the lemma follows.

Lemma 3.4 shows that the inhomogeneous (quadratic plus linear) case reduces to the homo-
geneous quadratic case for even n. The next lemma shows that there is an intimate connection
between the homogeneous quadratic case for even n and the inhomogeneous case for n− 1.

Lemma 3.5. Let n be even. Then there is a quadratic form t′ ∈ Z3[y2, ..., yn] and a k ∈ Zn−1
3

such that,

S(t,0, n) = S(t′,k, n− 1).
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Proof: For convenience, we introduce some notation. Write t as,

t(y1, ..., yn) = t2(y2, ..., yn) + y1(k1 · yb2),

where t2 is the homogeneous part of t that only involves the variables y2, ..., yn, k1 denotes
the vector of coefficients k1j , yb2 denotes the vector of variables (y2, ..., yn), and thus k1 · yb2
denotes

∑n
j=2 k1jyj .

We write the sum for S(t,0, n) and do the sum over y1:

S(t,0, n) =
1
2n
∑
y

(
n∏
i=1

yi)ωt2(yb2)+y1(k1·yb2)

=
1
2n
∑
yb2

(
n∏
i=2

yi)ωt2(yb2)(ω(k1·yb2) − ω(−k1·yb2))

=
1
2

(S(t2,k1, n− 1)− S(t2,−k1, n− 1))

= S(t2,k1, n− 1),

where, noting that n−1 is odd, we applied Lemma 3.3 to obtain the last equality. Now taking
t′ to be t2 and k to be k1, the result follows.

Lemma 3.5 shows that the maximal sums for even n are equal to the maximal sums for
n− 1. Thus, in our inductive proof we gain no factors of

√
3/2 in going from odd n to (even)

n+ 1. These factors arise in going from even n to n+ 1, and thus the following lemma is the
cornerstone of the proof.

Lemma 3.6. Let n be odd. Then there is a quadratic form t′ ∈ Z3[y2, ..., yn] such that,

|S(t,k, n)| ≤
(√

3
2

)
|S(t′,0, n− 1)|.

Proof: Proceeding as in the proof of Lemma 3.4, by Lemma 3.3,

S(t,k, n) =
1
2

(S(t,k, n)− S(t,−k, n))

=
1

2n+1

∑
y

(
n∏
i=1

yi)ωt(y)(ωk·y − ω−k·y).

Apply the identity from Lemma 3.2(ii), with a = k · y. Then,

S(t,k, n) =
1

2n+1

∑
y

(
n∏
i=1

yi)ωt(y)(ω − ω)χ(k · y)

=
1
2n
· (ω − ω)

2

∑
y

χ(k · y)(
n∏
i=1

yi)ωt(y).

Now since S(t,0, n) = 0 (as we conclude either from Lemma 3.3 or the above relation, since
χ(0) = 0), we may assume that some ki is nonzero, since if all of the ki are 0 the bound
is trivially satisfied. Without loss of generality we may assume that k1 6= 0. To simplify

9



the expressions further, we may assume that k1 = 1; if k1 happens to be −1, we can flip
the sign of y1 and obtain a sum of exactly the same type with k1 = 1. Now to reduce this
sum to n − 1 variables, we first break up t as we did in the proof of Lemma 3.5. That
is, write t(y) = t2(yb2) + y1k1 · yb2, where as before yb2 denotes (y2, ..., yn), and k1 · yb2
denotes

∑n
i=2 k1jyj . Next do the sum over y1. Since

∏n
i=1 yi is really χ(

∏n
i=1 yi), we may write

χ(k · y)
∏n
i=1 yi = χ(y1k · y)

∏n
i=2 yi. When y1 = 1, we have y1k · y = 1 + k · yb2, and when

y1 = −1, we have y1k · y = 1 − k · yb2, where again, k · yb2 denotes
∑n
i=2 kiyi. (Note that k

and k1 are not necessarily the same.) Let s+(y) denote χ(1 + k · yb2)ωk1·y and s−(y) denote
χ(1− k · yb2)ω−k1·y. Then,

S(t,k, n) =
1
2n
· (ω − ω)

2

∑
yb2

n∏
i=2

yiω
t2(yb2)(s+(y) + s−(y)),

where

s+(y) + s−(y) = χ(1 + k · yb2)ωk1·y + χ(1− k · yb2)ω−k1·y.

We now apply the crucial identity Lemma 3.2(iii), with the correspondence a = k · yb2 and
b = k1 · yb2, in the above equation. We obtain,

s+(y) + s−(y) = ω(k·yb2−k1·yb2)2
+ ω−(k·yb2+k1·yb2)2

.

Now the expression for S(t,k, n) consists of two sums in n−1 variables entailing quadratic forms
in the exponent (plus constants). That is, there are quadratic forms t(1), t(2) ∈ Z3[y2, ..., yn]
and constants c1, c2 ∈ Z3 such that,

S(t,k, n) =
(ω − ω)

2
· 1

2
· (S(t(1),0, n− 1)ωc1 + S(t(2),0, n− 1)ωc2). (7)

Applying the triangle inequality as in Lemma 3.4, and using the fact that |ω − ω| =
√

3,
the result follows.

We can now present the proof of the main theorem.
Proof of Theorem 3.1: We obtain an upper bound on |S(t,k, n)| by induction on n.
First consider n = 1. In this case, there is no quadratic piece and our sum has the form,

1
2

∑
y∈{1,−1}

χ(y)ωky,

where k ∈ Z3. If k = 0, this sum is 0. If k 6= 0, this is readily seen to have the value ±(ω−ω)/2
which, in turn, has norm

√
3/2, thus establishing the result for n = 1.

Now suppose n is even, and that the result holds for m = n− 1. By Lemma 3.4, there is a
quadratic form t′ such that

|S(t,k, n)| ≤ |S(t′,0, n)|.

By Lemma 3.5, there is a quadratic form t′′ and a k ∈ Zn−1
3 such that,

|S(t′,0, n)| = |S(t′′,k, n− 1)|.

10



Noting that d(n− 1)/2e = n/2 = dn/2e, the inductive hypothesis says that

|S(t′′,k, n− 1)| ≤
(√

3
2

)dn/2e
,

which establishes the desired result for even n.
Now suppose n is odd, and that the result holds for m = n− 1. Lemma 3.6 says there is a

quadratic form t′ such that,

|S(t,k, n)| ≤
(√

3
2

)
|S(t′,0, n− 1)|.

By the inductive hypothesis, |S(t′,0, n− 1)| ≤ (
√

3/2)m/2. Thus,

|S(t,k, n)| ≤
(√

3
2

)
·
(√

3
2

)(n−1)/2

=

(√
3

2

)(n+1)/2

=

(√
3

2

)dn/2e
,

which establishes the result for odd n.
It is easy to see that the bound is tight, since we can meet it as follows. For even n, the

quadratic form

t(y1, ..., yn) = y1y2 + y3y4 + y5y6 + ...+ yn−1yn (8)

yields a maximum |S(t,0, n)| (and therefore, by Lemma 3.4, a maximum |S(t,k, n)|). The
computation is easy since the sum factors into n/2 pieces, each of the form,

1
4

∑
y1,y2∈{1,−1}

χ(y1y2)ωy1y2 ,

which has norm
√

3/2. Similarly, for odd n, the (nonhomogeneous!) polynomial,

t(y1, ..., yn) = y1 + y2y3 + y4y5 + ...+ yn−1yn (9)

yields the maximum norm for the exponential sum.

It is interesting to observe that while the maximal quadratic polynomials for even n
are quadratic forms (as indeed they must be in accordance with Lemma 3.4), the maximal
quadratic polynomials for odd n have only one linear term. It is also notable that precisely the
same polynomials arise in computing the number of zeroes of quadratic polynomials in finite
fields of characteristic 2 (see, e.g., [LN], Chapter 6, Theorem 6.30).

By equation (4), Theorem 3.1 immediately implies an exponentially small upper bound on
the correlation.

Corollary 3.7. For all n,

|C(t,k, c, n)| ≤ 4
3
·
(√

3
2

)dn/2e
.

11



We thus obtain the circuit lower bounds that result from the main theorem. By Corol-
lary 3.7, we obtain immediately,

Corollary 3.8. Any MOD3 ◦AND2 circuit can agree with parity for at most a fraction 1/2 +
2−Ω(n) of the input settings.

By Corollary 3.7 and Lemma 2.1, we obtain,

Corollary 3.9. Circuits of type MAJ ◦MOD3 ◦AND2 must have size 2Ω(n) to compute parity.

We conclude this section with a result of a more technical nature. It is a fortuitous by-
product of the proof that the bound in Theorem 3.1 is tight. However, the upper bound on the
correlation in Corollary 3.7 is not tight, since the right-hand side can be irrational, whereas
C(t,k, c, n) is always rational. In the interest of completeness, and to do full justice to the
title of this paper, we feel compelled to ask if it is possible to push through tight upper bounds
for the correlation as well. Indeed, this can be done using the results and techniques of this
section, as we now explain. It turns out that this is not as straightforward as one might think
à priori. Indeed, the proof that follows also illustrates why the norm of the exponential sum
appears to be a much more convenient quantity to work with than its real part. We arrive at
the following refinement of Corollary 3.7.

Theorem 3.10. For all n,

|C(t,k, c, n)| ≤
(

3
4

)dn/4e−1

.

Furthermore, this bound can be achieved.

Proof: We begin by explicitly evaluating S(t,k, n) when the polynomials are the maximal
ones given in equations (8) and (9). In these cases, we have simply,

S(t,k, n) =
(
ω − ω

2

)dn/2e
=

(√
−3
2

)dn/2e
. (10)

First consider the case in which n ≡ 0 (mod 4). Then the maximal polynomial has k = 0,
the quantity S(t,0, n) is real, and has absolute value,

|S(t,0, n)| =
(

3
4

)dn/4e
.

Hence in this case

|C(t,0, 0, n)| = |4
3

ReS(t,0, n)| =
(

3
4

)dn/4e−1

,

which establishes the result for n ≡ 0 (mod 4). Now, since n is even, it follows from
Lemma 3.5 that the maximal value for S(t′,k′, n − 1) is the same as for S(t,0, n). Since
d(n−1)/4e = dn/4e, this also establishes the result for n−1. Thus the assertion holds if n ≡ 0
(mod 4) or n ≡ 3 (mod 4).
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We now consider the case in which n ≡ 1 (mod 4). Again, as above, by Lemma 3.5 this
takes care of the case n ≡ 2 (mod 4) as well, so the assertion holds for all values of n. We
prove the result for n ≡ 1 (mod 4) by induction on n such that n ≡ 1 (mod 4). For n = 1,
by equation (10), the maximal S(t,k, n) is i

√
3/2. To obtain the correlation, we rotate this as

close as possible to the real axis by choosing c = −1. Then,

C(t,k,−1, 1) =
4
3

Re(iω
√

3/2) =
2√
3

Re(iω) = 1,

which is clearly maximal and proves the result for n = 1.
Now suppose the result is true for n− 4 where n ≡ 1 (mod 4). That is, suppose, for any

quadratic form t′ in n− 4 variables, k′ ∈ Zn−4
3 and c′ ∈ Z3, that

|C(t′,k′, c′, n− 4)| ≤
(

3
4

)d(n−4)/4e−1

. (11)

Consider the quantity S(t,k, n). Since n is odd, by the proof of Lemma 3.6, in particular
equation (7), there are quadratic forms s(1), s(2) in n − 1 variables and constants c1, c2 ∈ Z3

such that,

S(t,k, n) =
(ω − ω)

2
· 1

2
· (S(s(1),0, n− 1)ωc1 + S(s(2),0, n− 1)ωc2)

=
√
−3
2
· 1

2

2∑
`=1

S(s(`),0, n− 1)ωc` .

Note that n− 1 is even. By Lemma 3.5, there are quadratic forms t(1), t(2) in n− 2 variables,
and vectors k(1),k(2) ∈ Zn−2

3 such that,

S(t,k, n) =
√
−3
2
· 1

2

2∑
`=1

S(t(`),k(`), n− 2)ωc` .

Now that n−2 is odd, we apply equation (7) again, for S(t(1),k(1), n−2) and S(t(2),k(2), n−2)
separately. There are quadratic forms u(1), u(2), u(3), u(4) in n − 3 variables, and constants
a1, a2, a3, a4 ∈ Z3 such that,

S(t,k, n) =

(√
−3
2

)2

· 1
4

4∑
`=1

S(u(`),0, n− 3)ωa` .

We employ Lemma 3.5 one final time, to conclude that there are quadratic forms
v(1), v(2), v(3), v(4) in n− 4 variables, and vectors m(1),m(2),m(3),m(4) ∈ Zn−4

3 such that,

S(t,k, n) = −3
4
· 1

4

4∑
`=1

S(v(`),m(`), n− 4)ωa` .

We multiply both sides of the above equation by (4/3)ωc and then apply the operator “Re” to
both sides. Since “Re” is linear (i.e., Re(z1 + z2) = Re(z1) + Re(z2), and Re(az) = aRe(z) if a
is real), we find,

C(t,k, c, n) = −3
4
· 1

4

4∑
`=1

C(v(`),m(`), a′`, n− 4),

13



for some a′1, a
′
2, a
′
3, a
′
4 ∈ Z3. Now apply the triangle inequality to this equation. Let

|C(v(`0),m(`0), a′`0 , n− 4)| denote the maximum of the four values appearing on the right-hand
side, and let t′ = v(`0), k′ = m(`0), and c′ = a′`0 . Then,

|C(t,k, c, n)| ≤ 3
4
|C(t′,k′, c′, n− 4)|.

By the induction hypothesis (11),

|C(t,k, c, n)| ≤ 3
4
·
(

3
4

)d(n−4)/4e−1

=
(

3
4

)dn/4e−1

,

which establishes the upper bound on |C(t,k, c, n)|. We can meet this bound by choosing the
maximal polynomial (9) and choosing c to rotate S(t,k, n) as close as possible to the real axis.
This concludes the proof.

4 Symmetric and Reducible Polynomials

Alon and Beigel [AB] (and, independently, this author) have asked if symmetric polynomials
give the highest correlation, the degree being fixed. If this were the case, then the results
of [CGT], [Gr99] would imply exponential lower bounds for MAJ◦MODm ◦ANDpolylog circuits.
Note that the optimal polynomials written down in (8) and (9) are not symmetric. Is it
nevertheless the case that some symmetric polynomial could give as high a correlation as the
known maximal ones?

The answer is no. In this section we examine the case in which t(y) and k ·y are symmetric
forms. In this case the correlation is much smaller than the tight upper bound of Theorem 3.1.

Theorem 4.1. If t is a symmetric quadratic form and k · y is a symmetric linear form, then

|S(t,k, n)| ≤ 2 ·
(√

3
2

)n
.

Proof: If t(y) is symmetric, then by a well-known theorem it can be written as an elemen-
tary symmetric polynomial:

t(y) = c
∑
i<j

yiyj ,

for some c ∈ Z3. Assume that the yi ∈ {−1, 1}, which suffices for the evaluation of S(t,k, n).
Now observe that

(
n∑
i=1

yi)2 =
∑
i 6=j

yiyj + n = −
∑
i<j

yiyj + n,

by virtue of the fact that y2
i = 1. Thus, without loss of generality,

t(y) = −c(
n∑
i=1

yi)2 + cn.

If k · y is symmetric, then (similarly) we can write it as k
∑n
i=1 yi for k ∈ Z3.
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Now the sum S(t,k, n) can be written as,

S(t,k, n) =
ωcn

2n
∑
y

n∏
i=1

yiω
−c(
∑n

i=1
yi)

2+k
∑n

i=1
yi .

We “reduce” this to the linear case as follows. Let a ∈ Z3. Then, using equation (2),

ω−ca
2+ka =

1
3

2∑
`=0

(1 + ωa−` + ω−a+`) · ω−c`2+k`.

Then, using the above relation with a =
∑n
i=1 yi,

S(t,k, n) =
ωcn

2n
· 1

3
·

2∑
`=0

∑
y

n∏
i=1

yi(1 + ω
∑n

i=1
yi−` + ω−

∑n

i=1
yi+`)ω−c`

2+k`

=
ωcn

2n
· 1

3
·

2∑
`=0

∑
y

n∏
i=1

yi(ω
∑n

i=1
yi−` + ω−

∑n

i=1
yi+`)ω−c`

2+k`,

where the last equality follows from the fact that
∑

y

∏n
i=1 yi = 0. It is straightforward to

evaluate the resulting sum exactly, since the sum over y breaks up into n factors:

S(t,k, n) =
ωcn

2n
· 1

3
·

2∑
`=0

(
ω−`(ω − ω)n + ω`(ω − ω)n)

)
ω−c`

2+k`

The right hand side consists of six terms each of norm (1/3)(
√

3/2)n. By the triangle inequality,
the theorem follows.

Thus non-symmetric polynomials can yield a strictly greater correlation than symmetric
polynomials. Note that in the course of the proof of the preceding theorem, we found that
t is reducible (up to a constant term). Using this fact, it was then possible to reduce the
evaluation of the sum to the evaluation of a sum involving a linear polynomial. The technique
can easily be generalized to prove that |S(t,k, n)| ≤ c(

√
3/2)n for some constant c whenever t

is reducible. Hence the bound of Theorem 3.1 can only be met by irreducible polynomials.
Although symmetric polynomials do not give the highest correlation, the maximal polyno-

mials nevertheless have a special form. In the terminology of [Gr99], they are block symmetric,
that is, symmetric in pairwise disjoint subsets of the inputs. In [Gr99], it is shown that low-
degree block-symmetric polynomials give an exponentially small correlation in general. Thus
if it can be shown that block-symmetric polynomials give the highest correlation (the degree
being fixed), the main problem of this paper will be solved. A further comment on this point
appears in the final section.

5 Discussion

We believe that it will be possible to generalize the techniques of this paper to higher degree
polynomials, as well as to other moduli than 3. Our motivation for reporting on the special
case of parity versus MOD3 here is, in part, because the proof is simple enough to indicate, in
broad outline, how a more general proof would proceed, but also sufficiently subtle so as to
indicate where exactly the problems lie.
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What are the difficulties? They exist on two fronts. Let us first consider extending the
MOD3 result to higher-degree polynomials. For example, consider polynomials of degree 3. In
this case, we immediately lose most of the nice symmetry properties (e.g., Lemma 3.3) that
were instrumental in the proof. We need to exploit other properties of the sum. It is not clear
what those properties are. The nature of the identity in Lemma 3.2(iii), and if some suitable
generalization might be useful, is also unclear. The fact that Lemma 3.3 also holds when t
is a polynomial with terms all of even degree strongly suggests there are other things to be
discovered.

We comment on a conjecture (“Conjecture 5.1”) that was made in an earlier version of this
paper. Let S(p, n) denote the generalization of S(t,k, n) to higher degrees, that is,

S(p, n) =
1
2n

∑
y∈Zn

3

χ(
n∏
i=1

yi)ωp(y),

where p(y) is any polynomial. It is interesting to note that, if deg(p) = 1, then |S(p, n)| ≤
(
√

3/2)n (see [Gr99] or the proof of Theorem 4.1), if deg(p) = 2, then |S(p, n)| ≤ (
√

3/2)dn/2e

(Theorem 3.1), and that if deg(p) = n, then |S(p, n)| ≤
√

3/2 (implicit in the proof of Theo-
rem 3.1, and also in [Gr99]). Furthermore, for any d we can find a polynomial p of degree d
such that |S(p, n)| = (

√
3/2)dn/de. For example, if n is divisible by d, the following form meets

this bound:

p(y1, ..., yn) = y1y2 · · · yd + yd+1yd+2 · · · y2d + ...+ yn−d+1yn−d+2 · · · yn.

It is therefore tempting to conjecture (as we did) that|S(p, n)| ≤ (
√

3/2)dn/deg(p)e.
However, via a brute-force computation we have found that this is not true in general.

In particular, for deg(p) = 3 and n = 4, the bound exceeds 3/4. This can be easily verified
by hand because when p(y) is symmetric (in fact, the sum of all possible monomials), the
sum takes on the value |6ω − 9|/16 ∼= 0.81729. The fact that this is the best bound is quite
interesting, and mildly suggests that the symmetric case might give a general upper bound for
degree higher than 2. Unfortunately, it is not at all clear how to prove this.

Now consider the case of other moduli, for example MOD5. Here, as elaborated in [Gr99],
the relevant sums (over Boolean variables) are of the following form:

S =
∑

x∈{0,1}n
(−1)

∑n

i=1
xiζt(x),

where ζ = e2πi/5 is a primitive complex fifth root of unity. We can once again make the change
of variable xi = (1/2)(1 − yi) where yi ∈ {1,−1}. We can then re-write the sum in terms of
the quartic multiplicative character χ of Z5:

S =
∑

y∈{1,0,−1}n
χ(

n∏
i=1

yi)ζt
′(y). (12)

If we start with a MOD5 ◦ AND2 circuit, t′ will be quadratic. Now in fact Lemma 3.3 and
Lemma 3.5 hold for this type of sum. But the proofs of Lemmas 3.4 and 3.6 no longer work.
Part of the problem is that S as given in equation (12) is a partial sum, i.e., the variables yi do
not range over the entire field Z5. It is possible to re-formulate the discriminator so as to obtain
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character sums that range over the complete field, by encoding field elements in the Boolean
variables along the lines of [BS], [KP], and [Gr00]. However, the degrees of the polynomials
are then higher than 2, and we are back to the problem of higher-degree polynomials.

Despite these problems, we believe at this point that they are not particularly difficult and
that an appropriate algebraic setting will resolve them.
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[Has] J. Håstad, Computational limitations of small-depth circuits, the MIT press, Cam-
bridge, 1987.
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