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This is a summary of the main points we’ve dis-
cussed in class about the completeness of the real
numbers. This concept is needed for the mathe-
matical foundations for sequences and series.

Definition of LUBs, etc. Our discussion of the
formal mathematics began with the definitions of
least upper bounds and the least upper bound ax-
iom.

Definition 1. An upper bound of a set S of real
numbers is any real number which is greater or
equal to all numbers in S. A lower bound is any
which is less than or equal to all numbers in S. A
least upper bound is an upper bound which is less
than or equal to all upper bounds. A greatest lower
bound is a lower bound which is greater than or
equal to all lower bounds.

Note that this definition does not say that any of
these things exist. Sometimes they do and some-
times they don’t. It depends on what set S is.

We’ll use the notation lubS for the least upper
bound of S, should it exist, and glbS for the great-
est lower bound, should it exist. The least upper
bound is also called the supremum of the set, and
the greatest lower bound is also called the infemum
of the set.

Here are some examples of sets and their bounds.

Example 2 (a finite set). S = {2, 8, 12}. Any
number ≥ 12 is an upper bound. The least upper
bound is 12. Any number ≤ 2 is a lower bound.
The greatest lower bound is 2. For a finite set S,
lubS is always the largest number in S, and glbS
is always the smallest number in S.

Example 3 (a closed interval). S = [4, 9]. lubS =
9, glbS = 4. Like in the previous example, the lub
and the glb are the largest and smallest numbers in
the set. Any time S contains a largest number, that
number is its lub. Likewise, any time S contains a
smallest number, that’s its glb.

Example 4 (a bounded open interval). S = (4, 9).
Same lub and glb as in the last example, but this
time they aren’t numbers in S.

Example 5. S = (−∞, 9). Same lub as the previ-
ous example. This S has no lower bounds at all, so
it has no greatest lower bound.

Example 6. S = {0.9, 0.99, 0.999, . . .}. This is an
infinite set. The smallest number in S is 0.9, so
that’s its glb. This S contains no largest number,
but 1 is the least upper bound of S.

Although some sets don’t have lub’s and glb’s, a
set can have at most one of each. You can’t have
two different numbers being lub’s since each would
have to be greater than or equal to the other, hence
equal.

The completeness axiom. There are various
different logically equivalent statements that can
be used as an axiom of the completeness of the
real numbers. We’ll use one called the least upper
bound axiom.

Axiom 7 (Least upper bound axiom). Each
nonempty set of real numbers that has an upper
bound has a least upper bound.

Theorem 8. Each nonempty set of real numbers
that has a lower bound has a greatest lower bound.

Proof. Let S bet a set of real numbers that has a
lower bound L. Let T be the set T = {x | −x ∈ S}.
Then −L is an upper bound of T . (For if x ∈ T ,
then −x ∈ S, so L ≤ −x, so s ≤ −L.) Therefore,
by the lub axiom, T has a least upper bound M .
Then −M is a greatest lower bound of S. (Details
omitted.) q.e.d.
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Theorem 9. If M = lubS and ε > 0, then there
exists at least one x ∈ S such that M−ε < x ≤M .

Proof. If there weren’t such an x, then M−ε would
be a smaller upper bound for S than M . q.e.d.

The IVT and the EVT. The Intermediate
Value Theorem (IVT) and the Extremal Value The-
orem (EVT) for continuous functions follow from
the least upper bound axiom. These are things you
probably studied in the first semester of calculus.
We won’t prove them here, but it’s worthwhile re-
viewing them.

Theorem 10 (IVT). If f is a continuous function
on [a, b] then it takes on all values between f(a) and
f(b), that is, if K lies between f(a) and f(b), then
there is some c between a and b such that f(c) = K.

Theorem 11 (EVT). If f is a continuous function
on [a, b] then it takes on a maximum value and a
minimum value.

The EVT is used to prove the Mean Value Theo-
rem (MVT) which says that if a function f is differ-
entiable on and interval [a, b] average rate of change
f(b)− f(a)

b− a
over that interval is the value of the

derivative somewhere on that interval, that is, there
is some c in that interval so that f ′(c) is equal to
that average rate of change.

The MVT is used in turn to prove that such
statements as functions with 0 derivatives are con-
stant, functions with positive derivatives are in-
creasing, etc.

Math 122 Home Page at
http://math.clarku.edu/~djoyce/ma122/
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