Cross products

Math 122 Calculus III
D Joyce, Fall 2012

The definition of cross products. The cross product $\times: \mathbf{R}^{3} \times \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ is an operation that takes two vectors \mathbf{u} and \mathbf{v} in space and determines another vector $\mathbf{u} \times \mathbf{v}$ in space. (Cross products are sometimes called outer products, sometimes called vector products.) Although we'll define $\mathbf{u} \times \mathbf{v}$ algebraically, its geometric meaning is understandable. The vector $\mathbf{u} \times \mathbf{v}$ will have a length equal to the area of the parallelgram whose sides are \mathbf{u} and \mathbf{v}, and the direction of $\mathbf{u} \times \mathbf{v}$ will be orthogonal to the plane of \mathbf{u} and \mathbf{v} in a direction determined by a right-hand rule (when the coordinate system is right-handed).

The easiest way to define cross products is to use the standard unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} for \mathbf{R}^{3}. If

$$
\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}
$$

and

$$
\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}
$$

then $\mathbf{u} \times \mathbf{v}$ is defined as

$$
\mathbf{u} \times \mathbf{v}=\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}+\left(u_{3} v_{1}-u_{1} v_{3}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k}
$$

which is much easier to remember when you write it as a determinant

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{cc}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \mathbf{k} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
\end{aligned}
$$

Properties of cross products. There are a whole lot of properties that follow from this definition. First of all, it's anticommutative

$$
\mathbf{v} \times \mathbf{u}=-(\mathbf{u} \times \mathbf{v})
$$

so any vector cross itself is $\mathbf{0}$

$$
\mathbf{v} \times \mathbf{v}=\mathbf{0}
$$

It's bilinear, that is, linear in each argument, so it distributes over addition and subtraction, $\mathbf{0}$ acts as zero should, and you can pass scalars in and out of arguments

$$
\begin{aligned}
& \mathbf{u} \times(\mathbf{v} \pm \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \pm(\mathbf{u} \times \mathbf{w}) \\
& (\mathbf{u} \pm \mathbf{v}) \times \mathbf{w}=(\mathbf{u} \times \mathbf{w}) \pm(\mathbf{v} \times \mathbf{w})
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{0} \times \mathbf{v}=\mathbf{0}=\mathbf{v} \times \mathbf{0} \\
c(\mathbf{u} \times \mathbf{v})=(c \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(c \mathbf{v})
\end{gathered}
$$

A couple more properties you can check from the definition, or from the properties already found are that $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=0$ and $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$. Those imply that the vector $\mathbf{u} \times \mathbf{v}$ is orthogonal to both vectors \mathbf{u} and \mathbf{v}, and so it is orthogonal to the plane of \mathbf{u} and \mathbf{v}.

Standard unit vectors and cross products. Interesting things happen when we look specifically at the cross products of standard unit vectors. Of course

$$
\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\mathbf{0},
$$

since any vector cross itself is $\mathbf{0}$. But

$$
\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j},
$$

and

$$
\mathbf{j} \times \mathbf{i}=-\mathbf{k}, \quad \mathbf{k} \times \mathbf{j}=-\mathbf{i}, \quad \mathbf{i} \times \mathbf{k}=-\mathbf{j},
$$

all of which follows directly from the definition.

Length of the cross product, areas of triangles and parallelograms. A direct computation (which we'll omit) shows that

$$
\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta
$$

where θ is the angle between the vectors \mathbf{u} and \mathbf{v}.
Consider a triangle in 3 -space where two of the sides are \mathbf{u} and \mathbf{v}.

Taking \mathbf{u} to be the base of the triangle, then the height of the triangle is $\|\mathbf{v}\| \sin \theta$, where θ is the angle between \mathbf{u} and \mathbf{v}. Therefore, the area of this triangle is

$$
\text { Area }=\frac{1}{2}\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta=\frac{1}{2}\|\mathbf{u} \times \mathbf{v}\| .
$$

(In general, the area of a any triangle is half the product of two adjacent sides and the sine of the angle between them.)

Area of a parallelogram in \mathbf{R}^{3}. Now consider a parallelogram in 3-space where two of the sides are \mathbf{u} and \mathbf{v}.

Of course, if the triangle is doubled to a parallelogram, then the area of the parallelogram is $\|\mathbf{u} \times \mathbf{v}\|$.

Thus, the norm of a cross product is the area of the parallelgram bounded by the vectors.
We now have a geometric characterization of the cross product. The cross product $\mathbf{u} \times \mathbf{v}$ is the vector orthogonal to the plane of \mathbf{u} and \mathbf{v} pointing away from it in a the direction determined by a right-hand rule, and its length equals the area of the parallelgram whose sides are \mathbf{u} and \mathbf{v}.

Note that $\mathbf{u} \times \mathbf{v}$ is $\mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} lie in a line, that is, they point in the same direction or the directly opposite directions.

Triple scalar products and the volume of a parallelepiped in \mathbf{R}^{3}. Sometimes a "triple scalar product" of three vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} is defined as the determinant

$$
[\mathbf{u}, \mathbf{v}, \mathbf{w}]=\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

Note that the triple product $[\mathbf{u}, \mathbf{v}, \mathbf{w}]$ is a scalar, not a vector. Triple scalar products can be written in terms of cross and dots products in several ways including

$$
[\mathbf{u}, \mathbf{v}, \mathbf{w}]=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})
$$

It turns out that the absolute value of this triple product is the volume of the parallelepiped whose edges are \mathbf{u}, \mathbf{v}, and \mathbf{w}.

Math 122 Home Page at http://math.clarku.edu/~djoyce/ma122/

