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L’Hopital’s rule is a way of determining the limits
for two indeterminant forms, namely % and 22, and
other indeterminant forms which can be converted
into those forms such as oo — 0o, 0- 00, 0°, 1°°, and
oo’

This rule was in L’Hopital’s 1696 textbook on
calculus, the first textbook on calculus ever pub-
lished. L’Hopital learned it from Johann Bernoulli.

Indeterminant forms. Frequently you can tell
what value an expression is approaching by exam-
ining what its components are approaching. For
2
¢ —4
example, for the limit, lim

a—3 x2 — 3x + 2
ator is approaching 5 while the denominator is ap-

proaching 2, so, of course, the limit is 2. This 2 is
a determinant form; whenever the numerator ap-
proaches 5 and the denominator approaches 2, the
quotient approaches g

But the limit

, the numer-

is different. Both the numerator and denominator
approach 0. This limit has the indeterminant form
8. In order to determine the limit, you’ll have to
look at more than just its form. For this limit, it’s
easy; just factor the numerator and denominator
and cancel the common factor z — 2 to see that the

limit is

o+ 2
lim =
=21 — 1

4.

We need to examine limits that have indetermi-
nant forms to see what they are; the forms them-
selves don’t tell us. Other indeterminant forms are
mentioned in the introductory paragraph.

L’Hopital’s rule for %. The limit of this indeter-
minant form depends on the rates that the numer-
ator and denominator approach 0. If the numera-
tor approaches 0 faster than the denominator, then
the limit will be small; if slower, large. Rates are
derivatives, and that suggests that we can replace
the numerator and denominator by their deriva-
tives. That’s L’Hopital’s rule. Here’s its statement.

Theorem 1 (L’Hopital’s rule for ). When consid-

x
ering a limit of lim M where both the numerator
Tr—a g €T

f(x) — 0 and the denominator g(z) — 0, if the
/
denominator g(z) # 0 near a and if lim f/((xs =L,
z—a g'(T
f(x)

then lim —= = L, also.
z—a g()
This is valid even when a = +o0.

We'll give a geometric proof of the special case
when ¢'(x) — D # 0 in class. The general case re-
lies on something called Cauchy’s mean-value the-
orem, and we’ll skip the general case.

For an example of it’s use,2 consider the limit
we looked at before, lim v -4 Both the

e—2 12 — 3T +
numerator and denominator approach 0 as z —

2. The derivative of the numerator is 22 while
the derivative of the denominator is 2 — 3. We
know the quotient of these derivatives approaches

= 4. Therefore the quotient of the

. : . z®—4
original functions does, too. lim ———— =
-2 12 — 3x + 2

1, lim
r—2 2:[‘ — 3

Here’s another example.

? vm .
z—0 Sin &

z—0 COS T 1

Sometimes you’ll use LL’Hopital’s rule twice.

e —x—1 g .. e£—1
lim — = lim
xz—0 x2 z—0 2x
va ,. €f
= lim—=-
z—0 2 2



L’Hopital’s rule for 2. The statement is al-

most identical to the g statement.

Theorem 2. When considering a limit of lim Lx;
z—a g(T

where both the numerator f(x) — oo and the de-
nominator g(z) — oo, if the denominator g(z) # 0

/
near a and if lim f,(x) = L, then lim M =L,
v—a g'() w—a g()

also.

Here’s an outline of a proof. There are some de-
tails missing.
Let’s restate the % form as follows. If f — 0 and

/
g—>0,thenig——>1.

/
Suppose now that f — oo and ¢ — oo. Then

1/f — 0and 1/g — 0. Apply the g form to 1/f
(1/f) 1/g)

and 1/g to get m a/f

!
2

— 1. That says

9-9/9 |
f=r/r
That simplifies to

fq
gt
which is what we wanted to show.
For an example, take

1

, Inz vH , 1/z , 2
im — = lim ——— = lim — =
That example shows that the logarithm function
grows to infinity much slower than the square root
function. You can generalize that example to show
that logs grow to infinity much slower than any
positive power.
Likewise, you can show that e* grows to infinity

0

e
much faster than any power, that is lim — = oo
z—oo T

for any constant n.
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