Summary: polar and parametric
 Math 122 Calculus III

D Joyce, Fall 2012
This is a summary sheet about the topics we've discussed in polar coordinates and parametric equations.

Polar coordinates and complex numbers A point in the plane is described in rectangular coordinates by a pair (x, y) of real numbers. It can be identified with the complex number $x+y i$.

It can also be described in polar coordinates by the pair $[r, \theta]$ where

$$
\begin{aligned}
x & =r \cos \theta & r^{2} & =x^{2}+y^{2} \\
y & =r \sin \theta & \tan \theta & =y / x
\end{aligned}
$$

As complex numbers, $x+y i=r(\cos \theta+i \sin \theta)$.
Curves in the plane can be described either in rectangular coordinates as an equation in x and y, or in polar coordinates as an equation in r and θ.

When an curve is given in polar coordinates as a function $r=f(\theta)$, we can find the area inside the curve and between two rays $\theta=\alpha$ and $\theta=\beta$ as the integral $\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta$.

The slope at a point of a curve in polar coordinates is $\frac{d y}{d x}=\frac{r^{\prime} \sin \theta+r \cos \theta}{r^{\prime} \cos \theta-r \sin \theta}$.
Parametric equations The path of a point at time t is given by a pair of equations $x=x(t)$ and $y=y(t)$. In that case we say that the curve is described by the parameter t. The position of the point at time t is the vector (x, y). Any variable can be used as a parameter, but usually the parameter is t or θ.

The velocity of the point at time t is $\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime}(t), y^{\prime}(t)\right)$, and its acceleration is $\left(x^{\prime \prime}, y^{\prime \prime}\right)=\left(x^{\prime \prime}(t), y^{\prime \prime}(t)\right)$. It's speed is $s=\sqrt{x^{\prime 2}+y^{\prime 2}}$.

The slope at the point (x, y) of the curve is $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$.
The area under a curve given parametrically for $a \leq t \leq b$ is $\int_{a}^{b}=y x^{\prime} d t$.
The length of the curve for $a \leq t \leq b$ is $\int_{a}^{b} d s=\int_{a}^{b} s d t=\int_{a}^{b} \sqrt{x^{\prime 2}+y^{\prime 2}} d t$.
Math 122 Home Page at http://math.clarku.edu/~djoyce/ma122/

