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Last time. Began Möbius geometry.

Due Friday. Exercises from chapter 5: 1, 2, 3a, 4,
6 (first two), 8a.

First test. Friday, September 30.

Today. More on Möbius geometry, especially cross
ratios.

Fixed points of a Möbius transformation.

It will help us to understand Möbius transforma-
tions if we have some understanding of their fixed
points. A fixed point z of a transformation T is a
point such that T (z) = z.

Of course, every point is a fixed point of the iden-
tity transformation I(z) = z, but we’ll see in a
moment that no other Möbius transformation has
more than two fixed points. Suppose

T (z) =
az + b

cz + d
= z.

A little algebra simplifies this equation to

cz2 + (d − a)z − b = 0.

This is a nontrivial equation when T 6= I, and it’s
either a quadratic or linear equation depending on
whether c is nonzero or zero. Therefore, it has at
most two solutions (since a quadratic equation ei-
ther has two solutions or one double solution, while
a linear equation has one solution). That means,
excepting the identity transformation, a Möbius
transformation has at most two fixed points.

Cross ratios. The cross ratio of four complex
numbers z0, z1, z2, and z3 is defined to be

(z0, z1, z2, z3) =
z0 − z2

z0 − z3

z1 − z3

z1 − z2

.

You may find the definition of cross ratio easier to
remember if you write it in the form

(z0, z1, z2, z3) =
z0 − z2

z0 − z3

/

z1 − z2

z1 − z3

.

Actually, we rarely need this definition once we
have the observation in the next paragraph.

When z1, z2, and z3 are distinct, and z0 is re-
placed by a variable z, this cross ratio can be used
to define a Möbius transformation

T (z) = (z, z1, z2, z3) =
z − z2

z − z3

z1 − z3

z1 − z2

.

Note that T (z1) = 1, T (z2) = 0, and T (z3) = ∞.
We’ll also express T (z1) = 1 by saying that T maps
z1 to 1. Symbolically T maps

z1 7→ 1, z2 7→ 0, z3 7→ ∞.

The following theorem is sometimes called The

Fundamental Theorem of Möbius Geometry.

Theorem: If z1, z2, and z3 are three distinct com-
plex numbers, and w1, w2, and w3 are also three
distinct complex numbers, then there is a unique
Möbius transformation that maps each zi to wi:

z1 7→ w1, z2 7→ w2, z3 7→ w3.

Proof: First we’ll show that there is at least one
by exhibiting it. Simply take the composition of the
Möbius transformation (z, z1, z2, z3) and the inverse
of (z, w1, w2, w3). Since the first one maps

z1 7→ 1, z2 7→ 0, z3 7→ ∞,

while the inverse of the second one maps

1 7→ w1, 0 7→ w2,∞ 7→ w3,
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therefore their composition accomplishes the goal.
Second, we’ll show that there’s only one such

transformation. Suppose, on the contrary, that U

and T each map

z1 7→ 1, z2 7→ 0, z3 7→ ∞.

Then the composition of T with the inverse of U ,
that is, the transformation U−1T , maps

z1 7→ z1, z2 7→ z2, z3 7→ z3.

That means U−1T has at least 3 fixed points. But
only the identity transformtion I has more than
2 fixed points. Therefore, U−1T = I. But that
implies T = U . Therefore, there’s only one such
transformation. Q.E.D.

One of the implications of this theorem is that
every Möbius transformation is of the form

T (z) = (z, z1, z2, z3) =
z − z2

z − z3

z1 − z3

z1 − z2

.

That’s because this theorem says the Möbius trans-
formation is determined by what three complex
numbers z1, z2, and z3 are sent to 1, 0, and ∞,
respectively.

Invariance of the cross ratio. Recall that a
function is an invariant of a geometry if it has the
same value for congruent figures, that is, if A is a
figure and T a transformation of the geometry, then
the function has the same values for A and T (A).

We can treat the cross ratio (z0, z1, z2, z3) as a
function of a 4-point figure. (Strictly speaking, the
four points are not a subset of C+, but an ordered
subset of C+, or perhaps you could label the sub-
set with labels 1, 2, 3, and 4. We really do want to
be able to have labels on our figures, so we should
probably go back and modify our defintion of fig-
ure.) To show that it’s an invariant of Möbius ge-
ometry, we have to show that the cross ratio of this
4-point figure has the same value as the cross ratio
of the image of this 4-point figure under any Möbius
transformation T , that is, we have to show

(z0, z1, z2, z3) = (T (z0), T (z1), T (z2), T (z3)).

Theorem. The cross ratio is invariant in Möbius
geometry.

Proof: Let S be the transformation that maps

z1 7→ 1, z2 7→ 0, z3 7→ ∞,

that is, S(z) = (z, z1, z2, z3). Then the composition
ST−1 maps

T (z1) 7→ 1, T (z2) 7→ 0, T (z3) 7→ ∞.

But the unique Möbius transformation that
does that is (z, T (z1), T (z2), T (z3)). Therefore,
ST−1(z) = (z, T (z1), T (z2), T (z3)). Thus,

(z0, z1, z2, z3) = S(z0)

= ST−1(T (z0))

= (T (z0), T (z1), T (z2), T (z3))

In words, the cross ratio is an invariant funtion of
Möbius geometry. Q.E.D.

Now that we have this important invariant, let’s
see what it means in familiar geometric terms.

Clines. (Usually these are called circles or cy-
cles, but we’ll follow the text and call them clines.)
Before giving the definition, let’s have a theorem
that justifies it.

Theorem. The cross ratio (z0, z1, z2, z3) is a real
number if and only if the four points z0, z1, z2, and
z3 either line on a Euclidean circle or on a straight
line.

(Refer to the text for a proof.)

Definition. A cline in C+ (the complex plane
with a point at ∞) is either a circle or a straight
line, and when it’s a straight line, it includes the
point at ∞.

The preceeding theorem implies that set of clines
is an invariant set of figures in Möbius geometry,
that is, a Möbius transformation sends each cline
to some other cline. Except for the identity trans-
formation, every Möbius transformation will send
some circles to straight lines and some straight lines
to circles.
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