
Math 128, Modern Geometry

D. Joyce, Clark University

26 Sep 2005

First test. This Friday, to cover through chapter
5. Review on Wednesday.

Today. We’ll begin chapter 6 which looks into
Möbius geometry in a more depth. We’ll see what
Steiner circles are. Actually, Steiner circles aren’t
circles, but families or sets of circles. They’re also
called pencils or bundles of circles. We’ll use these
Steiner circles to understand Möbius transforma-
tions better.

Families of Steiner circles of the first and

second kinds. If p and q are two distinct points in
C+, the set of all the clines (circles or lines) in C+

that pass through p and q form a family of Steiner

circles of the first kind.

Note that one of the two points p or q may be
the point at ∞, in which case all the clines are
actually straight lines. Indeed, in order to study
a family of Steiner circles better, we’ll apply the

Möbius transformation S(z) =
z − p

z − q
which maps

p 7→ 0 and q 7→ ∞. Then the family of Steiner
circles is just the set of all straight lines through
the origin, 0.

Two circles or lines are said to be orthogonal or
perpendicular to each other if their tangent lines are
at right angles. (It’s funny that we have so many
words to say two things are at right angles to each
other. Besides saying that they’re at right angles
(English), we can say they’re perpendicular (Latin),
or orthogonal (Greek). Sometimes we say they’re
“normal.” One term would be enough. Sigh.)

A family of Steiner circles of the second kind

is the family of curves orthogonal to a family of
Steiner circles of the first kind. To visualize it bet-

ter, take a family of Steiner circles of the first kind,
apply the transformation mentioned above so that
it’s transformed into the family of straight lines
through the origin. Then, evidently, the family of
clines orthogonal to that is the family of concen-
tric circles whose center is the origin. Then apply
the inverse transformation to get a family of cir-
cles orthogonal to the original family. The result
is the family of Steiner circles of the second kine
orthogonal to the given family of the first kind.

The normal form of a Möbius transforma-

tion. We saw before that, except for the identity
transformation, every Möbius transformation has
either 1 or 2 fixed points. We’ll study those with
two fixed points now.

Let T be a Möbius transformation with two fixed
points, p and q. We can conjugate T by the trans-

formation S mentioned above, S(z) =
z − p

z − q
which

maps p 7→ 0 and q 7→ ∞. That will give us a trans-
formation R = STS−1. Since T has fixed points p

and q, therefore R will have fixed points 0 and ∞.
But it’s easy to see what Möbius transformations

R fix 0 and ∞. They’re all of the form R(z) = λz,
where λ is a nonzero complex constant. We can
interpret R as the composition of a rotation around
the origin and a scaling by a nonzero real factor
fixing the origin.

Now, a little algebra allows us to put T into a
“normal form.” From the equation ST = RS, we
can write

T (z) − p

T (z) − q
= λ

z − p

z − q
.

This is a particularly nice way to describe T since it
involves the two fixed points p and q of T along with
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the complex constant λ that includes the rotation
angle and the scaling factor.

Elliptic, hyperbolic, and loxadromic trans-

formations. We can classify the Möbius trans-
formations with two fixed points into these three
kinds.

When |λ| = 1, the transformation T is called an
elliptic transformation. Here, λ describes a rotation
by an angle θ, that is, λ = eiθ. The conjugate R of
T is the rotation of the plane about the origin by
the angle θ, but T describes some kind of swirling
about the fixed points p and q that moves points
along the orthogonal family of Steiner circles of the
second kind. Using the stereographic projection to
the sphere, we can see that T is something like a
rotation the sphere by an angle of θ fixing the points
corresponding to p and q in C+, but it’s not an
actual rotation of the sphere unless those two points
are antipodal points on the sphere.

When λ is a positive real number, the transfor-
mation T is called a hyperbolic transformation. The
conjugate R of T is a scaling of the plane fixing the
origin. The transformation T moves points along
the familty of Steiner circles of the first kind that
pass through the fixed points p and q.

When λ is not of the previous two special cases,
it is the product of two complex numbers, one being
λ

|λ|
which is a unit complex that describes a rota-

tion, the other being the real positive number |λ|
which describes a scaling. The transformation T is
called loxadromic, and it’s a composition of a ellip-
tic transformation and a hyperbolic transformation
with the same two fixed points.

Transformations with one fixed point. Now
that we’ve examined all the transformations with
two fixed points, let’s look at the ones with only
one fixed point. They’re called parabolic transfor-
mations.

Let T be a transformation with only one fixed
point p. We can map p to ∞ with the transfor-

mation S(z) =
1

z − p
. Then the circles that pass

through p will be mapped to straight lines (which
all pass through ∞).

We can conjugate T by the transformation S.
That will give us a transformation R = STS−1

which has the formula R(z) = z + β, where β is
a complex constant. Since T has the fixed point p,
therefore R will have fixed point ∞. Indeed, R is a
translation by the complex number β. It translates
along a family of lines parallel to the direction of
β.

If we apply the inverse transformation S−1 to this
family of parallel lines, we’ll get a family of circles
that pass through the point p and are all tangent
to each other. This family of circles is sometimes
called a degenerate family of Steiner circles. The
family of curves orthogonal to the degenerate fam-
ily of Steiner circles is another one.
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