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Due Today. From Chapter 8: 1, 2, 8.

Last time. We finished our study of the hyper-
bolic plane. We looked at area. We saw that the
area of a triangle was equal to the angle defect of
the triangle, and that implied that that the largest
triangle has area π. Circles, however, have area
that grows exponentially with the radius.

Today. We’ll look at elliptic geometry. There are
two kinds of elliptic geometry, one called double
elliptic geometry, the other called single elliptic ge-
ometry. We’ll get double elliptic geometry using the
Erlanger programm from Möbius geometry. That
is, we’ll specify a particular subgroup of the Möbius
group, and its geometry we’ll call double elliptic ge-
ometry.

By means of the stereographic projection, we’ll
see double elliptic geometry as the geometry of the
sphere where its straight lines are great circles of
the sphere. Since any two great circles intersect at
two antipodal points, that means that two lines in
double elliptic geometry will intersect at two points
rather than one. Either by identifying each pair of
antipodal points to a single point, or by selecting
one of the pair, we’ll get single elliptic geometry.
In single elliptic geometry any two straight lines
will intersect at exactly one point. But the single
elliptic plane is unusual in that it is unoriented, like
the Möbius band.

The elliptic group and double elliptic ge-

ometry. The group of transformation that defines
elliptic geometry includes all those Möbius trans-
formations T that preserve antipodal points. On
the sphere that means if P and P ∗ are antipodal
points, then T (P ) and T (P ∗) are also antipodal

points. By the stereographic projection, antipodal
points correspond to points z and z∗ of C+ such
that zz∗ = −1. With a bit of algebra, as shown
in the text, such a transformation can always be
written in either of these two forms:

T (z) =
az + b

−bz + a
where |a|2 + |b|2 = 1

or

T (z) = eiθ
z − z0

z0z + 1
.

This group defines the double plane elliptic geom-

etry on C+. Since the transformation preserve an-
tipodal points, great circles are sent to great circles,
and these are the straight lines in elliptic geometry.
Actually, great circles correspond to certain circles
in C+, namely those that meet the unit circle at
ends of diameters.

Single elliptic geometry. As mentioned above,
lines in double elliptic geometry meet at two points
instead of one. To define single elliptic geometry,
use the same group, but identify antipodal points,
that is, if zz∗ = −1, then z and z∗ in C+ refer to
the same point in the single elliptic plane.

An alternate model for the single elliptic plane
is to take the interior of the unit disk along with
half the unit circle. That way one of each pair of
antipodal points is selected to be the point of the
single elliptic plane. When you do this, however,
you have to remember that points on one side of
the unit disk are close to points on the other side.

Most of the axioms for Euclidean geometry also
hold in single elliptic geometry. The parallel pos-
tulate does not, of course, since all lines intersect
in elliptic geometry, so there are not parallel lines
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there. A couple of the others require interpretation
to make them work in elliptic geometry. The first
15 propositions in Book I of Euclid’s Elements do
hold in elliptic geometry, but not the 16th. We’ll
look at it.

Length and area. Length and area are defined
so that they can be measured in the usual way on
the sphere via stereographic projection. That’s the
unit sphere, so the length of any of its great circles
is 2π. Since half of a great circle corresponds to a
line in the single elliptic plane, the total length of a
such a line is π. Lines have finite length in elliptic
geometry.

Triangles in the elliptic plane have an angle sum
greater than 180◦. The angular excess of a triangle

is defined by how much greater than π the angle
sum of the triangle is. That is, if α, β, and γ are
the three angles of the triangle, then its angle sum
is α+β+γ−π. Just as the angle defect is additive in
hyperbolic geometry, the angle excess is additive in
elliptic geometry. Therefore, the area of a triangle
in the elliptic plane is proportional to the angle
excess. We’ve already scaled everything properly
so the constant of proportion is 1, and therefore,
the area of a triangle equals the angle excess of the
triangle.
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