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We’d like to be able to say that the dimension
of a vector space is the number of vectors in its
basis, but we can’t yet since we haven’t yet proved
that any two bases of a vector space have the same
number of vectors. We’ll do that, at least in the
case that a vector space has a finite basis. If a
vector space doesn’t have a finite basis, it will have
an infinite dimension. We’ve got enough to do just
to with the finite dimensional ones.

The argument that shows two bases have the
same size works by replacing the vectors of one with
the vectors of the other. We’ll state that separately
and call it the Replacement Theorem. The desired
theorem, that two bases have the same number of
vectors, follows from that as a corollary.

Summary of points discussed so far. Recall
that a subset S of a vector space V is linearly inde-
pendent if 0 is not a nontrivial linear combination
of the vectors in S. Equivalently, no vector in S is
a linear combination of the rest of the vectors in S.

Also, recall that S is a basis of V if (1) it spans
V , and (2) it is linearly independent. Equivalently,
each vector in V may be uniquely represented as a
linear combination of vectors from S.

We also saw that every finite spanning subset of
a vector space has a subset which is a basis of that
vector space.

The Replacement Theorem. The replacement
theorem will allow us to replace vectors in a basis
with other vectors to get a new basis. Its proof
requires attention to detail.

Theorem 1 (Replacement). If a basis of a vector
space has n vectors, then no linearly independent
set of vectors has more than n vectors.

Proof. Let β0 = {b1,b2, . . . ,bn} be a basis of a
vector space V , and let T = {w1,w2, . . . ,wr} be a
set of linearly independent vectors in V . We need
to show that r ≤ n.

The idea is to replace the vectors in β0 by vectors
in T , one at a time, to get new bases, each with n
vectors. Eventually, all the vectors in T will be
part of a basis having n vectors, and that will show
r ≤ n.

Now, to get the replacement going right, add the
vectors of T to β0 one at a time. Suppose that
we’ve done that for a while and we’ve replaced i of
the vectors in β0 with i of the vectors in V . Then
we’ll have a basis βi of n vectors

βi = {w1, . . . ,wi,bi+1, . . . ,bn}

The next step is to replace another of the b’s with
wi+1.

Since βi is a basis, therefore wi+1 is a linear com-
bination of vectors in βi. It can’t depend only on
the vectors w1, . . . ,wi because the w’s are indepen-
dent, so that linear combination depends on one of
the b’s. Reindex the b’s so a vector wi+1 that de-
pends on is bi+1. We’ll replace vi+1 with wi+1 to
get

βi+1 = {w1, . . . ,wi+1,bi+2, . . . ,bn}

We have to show that βi+1 is a basis for V .
Claim. βi+1 spans V . We know every vector in

V is a combo of vectors in βi, and every vector in
βi is a vector in βi+1 except the vector bi+1 which
is a combo of vectors in βi+1, therefore every vector
in V is a combo of vectors in βi+1. Thus βi+1 spans
V .
Claim. βi+1 is independent. Suppose you have 0

as a nontrivial linear combination of vectors of βi+1.
Since wi+1 is a linear combination of vectors in βi,
that would give a nontrivial linear combination of
vectors in βi. But βi is independent, so that can’t
happen. Thus βi+1 is independent.

Therefore βi+1 is a basis for V .
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Continue replacing vectors until all the vectors
in T have replaced vectors of the original β0. We
end up with a basis of n vectors that includes all r
vectors from T . Therefore r ≤ n. q.e.d.

Dimension of a vector space. The following
corollary follows directly from the last theorem.

Corollary 2. Any two bases of a vector space have
the same number of vectors (assuming at least one
is a finite basis).

Proof. Since each basis is an independent set of vec-
tors it has no more vectors than the other basis.
Hence, the two bases have the same number of vec-
tors. q.e.d.

Definition 3. If a vector space as a finite basis,
then the dimension of a vector space is the number
of vectors in any of its bases.

For example, Rn has dimension n. Also, Pn, the
space of polynomials in t of degree less than or equal
to n, is a vector space of dimension n + 1. Also,
Mmn, the space of m × n matrices, has dimension
mn.

More on bases, linear independence, and
spanning sets. There are a few more observa-
tions we can make about bases and these related
concepts.

Corollary 4. Any linearly independent set of vec-
tors in a finite-dimensional vector space can be ex-
tended to a basis.

Proof. Take any basis and replace the vectors in
that basis with the linearly independent vectors
as done in the replacement theorem. You’ll end
up with a basis that includes the independent
set. q.e.d.

Corollary 5. If n vectors in a vector space of di-
mension n are independent, then they form a basis.

Proof. They can be extended to a basis of n vec-
tors, but there are already n vectors, so it is itself
that extension. That is to say, it’s already a ba-
sis. q.e.d.

Corollary 6. If n vectors in a vector space of di-
mension n span the space, then they form a basis.

Proof. We know that there’s a subset S ′ of the n
vectors S that form a basis for the space. But ev-
ery basis of the space has n vectors. Therefore the
subset S ′ has to be all of S. q.e.d.
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