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We’ve seen how norms and inner products work
in Rn. They can also be defined for Cn. There’s a
wrinkle in the definition of complex inner products.

The norm of a complex vector v. We’ll start
with the norm for C which is the one-dimensional
vector space C1, and extend it to higher dimen-
sions.

Recall that if z = x + iy is a complex number
with real part x and imaginary part y, the complex
conjugate of z is defined as z = x − iy, and the
absolute value, also called the norm, of z is defined
as

|z| =
√
x2 + y2 =

√
z z.

Now, if v = (v1, v2, . . . , vn) is a vector in Cn

where each vi is a complex number, we’ll define its
norm ‖v‖ as

‖v‖ = ‖(v1, v2, . . . , vn)‖

=
√
|v1|2 + |v2|2 + · · ·+ |vn|2 =

√√√√ n∑
k=1

|vk|2.

Note that if the coordinates of v all happen to be
real numbers, then this definition agrees with the
norm for real vector spaces.

Norms on Cn enjoy many of the same properties
that norms on Rn do. For instance, the norm of
any vector is nonnegative, and the only vector with
norm 0 is the 0 vector. Also, norms are multiplica-
tive in the sense that

‖cv‖ = |c| ‖v‖

when c is a complex number and v is a complex
vector.

Furthermore, the triangle inequality for complex
norms holds

‖v −w‖ ≤ ‖v‖+ ‖w‖.

We’ll prove it later.

The inner product 〈v|w〉 of two complex vec-
tors. We would like to have a complex inner
product that (1) extends the real product, (2) is
connected to the complex norm by the equation
‖v‖2 = 〈v|v〉, and (3) has nice algebraic properties
such as bilinearity.

In order to get property (2), we’ll have to intro-
duce a wrinkle into the definition. We cannot de-
fine 〈(v1, . . . , vn)|(w1, . . . , wn)〉 as v1w1+ · · ·+vnwn,
because then 〈(v1, . . . , vn)|(v1, . . . , vn)〉 would equal
v21 + · · ·+ v2n which doesn’t equal |v1|2 + · · ·+ |vn|2.
If we throw in a complex conjugate, however, it will
work. That explains the following definition.

Definition 1. The standard complex inner prod-
uct of two vectors v and w in Cn is defined by

〈v|w〉 = 〈(v1, v2, . . . , vn)|(w1, w2, . . . , wn)〉

= v1w1 + v2w2 + · · ·+ vnwn =
n∑

k=1

vkwk

It follows that for each v ∈ Cn, our desired con-
dition (2) above, holds

‖v‖2 = 〈v|v〉.

Also, condition (1) holds. If v and w happen to be
a real vectors, then their complex inner product is
the same as their real inner product.

Most of the algebraic properties of complex inner
products are the same as those of real inner prod-
uct. For instance, inner products distribute over
addition,

〈u|v + w〉 = 〈u|v〉+ 〈u|w〉,

and over subtraction,

〈u|v −w〉 = 〈u|v〉 − 〈u|w〉,
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and the inner product of any vector and the 0 vec-
tor is 0

〈v|0〉 = 0.

However, complex inner products are not com-
mutative. Instead they have the property

〈u|v〉 = 〈v|u〉.

Complex inner products are linear in their first
argument. If c is a complex scalar, then

〈cu|v〉 = c〈u|v〉

In for the second argument, we have instead

〈u|cv〉 = c〈u|v〉.

The complex conjugate of c comes from our defini-
tion where we use the complex conjugates of coor-
dinates of the second vector.

In summary, complex inner products are not bi-
linear, but they are linear in the first argument and
conjugate linear in the second argument.

Abstract linear spaces. So far, we’ve looked at
the standard real inner product on Rn and the stan-
dard complex inner product on Cn. Although we’re
primarily concerned with standard inner products,
there are other inner products, and we should con-
sider the generalization of these standard inner
products. We’ll call a vector space equipped with
an inner product an inner product space.

We can make the definitions for abstract inner
product spaces for both the real case and the com-
plex case at the same time. In the definition, we’ll
take the scalar field F to be either R or C.

Definition 2. An inner product space over F is a
vector space V over F equipped with a function
V ×V → F that assigns to vectors v and w in V a
scalar denoted 〈v|w〉, called the inner product of v
and w, which satisfies the following four conditions:

(a). 〈u + v|w〉 = 〈u|w〉+ 〈u|w〉,
(b). 〈cv|w〉 = c〈v|w〉,
(c). 〈v|w〉 = 〈w|v〉, and

(d). 〈v|v〉 > 0 if v 6= 0.

For an inner product space, the norm of a vector v
is defined as ‖v‖ =

√
〈v|v〉.

Note that when F = R, condition (c) simply says
that the inner product is commutative.

Properties (a) and (b) state that the inner prod-
uct is linear in the first argument. Using those and
(c), you can show that the inner product is conju-
gate linear in the second argument.

Condition (d) says that the norm ‖v‖ of a vector
is always positive except in the one case the that
v = 0. From condition (b) you can infer ‖0‖ = 0.
Another property of norms is that ‖cv‖ = |c| ‖v‖.

Finally, two more properties of inner products are
the Cauchy-Schwarz inequality |〈v|w〉| ≤ ‖v‖ ‖w‖,
and the triangle inequality ‖v + w‖ ≤ ‖v‖+ ‖w‖.
We’ll prove them later.

Examples. The standard inner products on Rn

and Cn are, of course, the primary examples of in-
ner product spaces.

Our text describes some other inner product
spaces besides the standard ones Rn and Cn. One
is a real inner product on the vector space of con-
tinuous real-valued functions on [0, 1]. Another is
an inner product on m× n matrices over either R
or C. We’ll discuss those briefly in class. There’s
another example of the vector space of complex-
valued functions on the unit circle we won’t have
time for.
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