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It’s important to know some of the applications
of linear algebra, and one of those applications is
to homogeneous linear differential equations with
constant coefficients.

What is a differential equation? It’s an equa-
tion where the unknown is a function and the equa-
tion is a statement about how the derivatives of the
function are related.

Perhaps the most important differential equation
is the exponential differential equation. That’s the
one that says a quantity is proportional to its rate of
change. If we let t be the independent variable, f(t)
the quantity that depends on t, and k the constant
of proportionality, then the differential equation is

f ′(t) = kf(t).

Its general solution is

f(t) = Aekt

where A is an arbitrary constant. This differential
equation has applications as the exponential model
of population growth, radioactive decay, compound
interest, Newton’s law of cooling, and lot’s more.

Another important differential equation is the
one that the sine and cosine function satisfies. For
both of those functions, their second derivative is
their negation. They satisfy the differential equa-
tion

f ′′(t) = −f(t).

That’s called a second order differential equation
since the second derivative is involved. The general
solution to this differential equation is

f(t) = A cos t + B sin t

where A and B are arbitrary constants.
Both of these equations are homogeneous linear

differential equations with constant coefficients. An
nth-order linear differential equation is of the form

anf
n(t) + · · · + a2f

′′(t) + a1f
′(t) + a0f(t) = b.

that is, some linear combination of the derivatives
up through the nth derivative is equal to b. In gen-
eral, the coefficients an, . . . , a1, a0, and b can be any
functions of t, but when they’re all scalars (either
real or complex numbers), then it’s a linear differ-
ential equation with constant coefficients. When b
is 0, then it’s homogeneous.

For the rest of this discussion, we’ll only consider
at homogeneous linear differential equations with
constant coefficients. The two example equations
are such; the first being f ′−kf = 0, and the second
being f ′′ + f = 0.

What do they have to do with linear alge-
bra? Their solutions form vector spaces, and the
dimension of the vector space is the order n of the
equation.

The first example was the first-order equation
f ′ − kf = 0. Its solutions were Aekt where A was
an arbitrary constant. The set of these solutions
is a vector space because the 0 function is one so-
lution, they’re closed under addition, and they’re
closed under multiplication by constants.

The second example was the second-order equa-
tion f ′′+ f = 0. Its solutions, A cos t+B sin t form
a two-dimensional vector space.

In general the set of solutions will always be a
vector space. The zero function is always a solution;
that’s because we’re only considering homogeneous
differential equations. If f and g both satisfy the
equation, then so does f +g. Finally, if c is a scalar
and f satisfies the equation, so does cf .

So, how do you solve these equations, and
why does the dimension of the solution space
equal the order of the equation? Let’s take
an example to illustrate it. It should be general
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enough to show the method, but not two compli-
cated. Consider the fourth-order equation

f ′′′′ − 4f ′′′ + 5f ′′ − 4f ′ − 4f = 0.

The trick is to treat derivatives as differential
operators—things which operate on functions. We

could denote this operator as
d

dt
as is common in

calculus, but a simple uppercase D makes it eas-
ier to see what’s going on. Then the differential
equation looks like

D4f − 4D3f + 5D2f − 4Df − 4f = 0,

and that can be rewritten as

(D4 − 4D3 + 5D2 − 4D − 4)f = 0.

Now, I chose this example to factor nicely. The
differential operator D4−4D3+5D2−4D−4 factors
as (D2 + 1)(D2 − 4D + 4), which further factors as
(D2 + 1)(D− 2)2. That first quadratic polynomial,
D2 + 1, is irreducible over R but factors over C,
so to make things easier, we’ll work over C. That
gives us the factorization into linear factors

(D − i)(D + i)(D − 2)2.

The Fundamental Theorem of Algebra assures us
that we can always factor an nth degree polynomial
into linear factors over C, so what happened in this
example will also happen in the general case. The
Fundamental Theorem of Algebra connnects the or-
der of the differential equation to the dimension of
the solution space.

Now we can break down the differential equations
into linear pieces. We can solve (D− i)f = 0 since
it’s just the exponential differential equation. It has
solutions f(t) = Aeit. Likewise (D+i)f = 0 has the
solutions f(t) = Be−it. That gives us solutions for
(D2 + 1)f = 0, namely Aeit + Be−it. Note that we
already saw a different description of the solutions
for this equation, f ′′ − f = 0, and that was as
A cos t + B sin t. The connection between the two
forms of the solutions is Euler’s identity

eit = cos t + i sin t.

You can use Euler’s identity to convert between the
two forms.

We still have the other factor (D − 2)2 to deal
with. The double root at 2 complicates the solu-
tions. I’ll leave out the derivation of the solution
to the differential equation (D− 2)2t = 0, and just
give its general solution, f(t) = Cte2t + Det2. You
can check that it works. Analogous solutions can
be found when there are multiple roots rather than
just double roots.

In summary, this example differential equation,
f ′′′′ − 4f ′′′ + 5f ′′ − 4f ′ − 4f = 0, has the general
solution

f(t) = Aeit + Be−it + Cte2t + Det2.

We haven’t shown that there aren’t any other solu-
tions, but we’ll skip that part since we’re just doing
a survey on the topic, not a whole course.

Dynamical systems. You might ask, are these
really important? Yes. Linear dynamical systems
are modelled using these equations.

In such a system you have several things that
change over time. Suppost they’re the quantities
x, y, and z. Some of these things affect others pos-
itively, some negatively. If x affects y positively,
then y′ will have a term kx where k is positive, but
if negatively, then k is negative. A linear dynamical
system is a system of linear equations like

x′ = + 2y − z
y′ = 2x
z′ = y − 3z

For this example, x and y affect each other posi-
tively in a positive feedback loop, and y positively
affects z, but z negatively affects x and itself.

Although it’s a system of three linear differential
equations, it’s equivalent to one third order differ-
ential equation.

Dynamical systems like this are used in physics,
chemistry, biology, economics, and almost any sub-
ject that calls itself a science.

Math 130 Home Page at
http://math.clarku.edu/~ma130/
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