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Dimension works fine for vector spaces over fields,
but there are things analogous to vector spaces over
fields where it doesn’t work. If you look at those
things, you’ll get a better idea of how nice things
are for vector spaces.

Rings. A ring is like a field except division is
not required for a ring. A commutative ring with
identity, or what we’ll call simply a ring, is a set
equipped with two binary operations that satisfy all
the axioms for fields except one. There no require-
ment that multiplication have inverses of nonzero
elements. There may elements x in a ring for which
there is no such thing as 1

x
.

Fields, of course, are special cases of rings, but
there are a lot of important rings that are studied
extensively.

The most important ring is the the ring of in-
tegers Z which contains all positive and negative
whole numbers as well as 0. In Z, the only ele-
ments that have inverses are 1 and −1. All the
rest, like 2, have no inverses in Z. By the way, an
element in a ring that does have an inverse is called
a unit.

Another important ring is the ring of polynomials
over a field F . The ring of polynomials in the vari-
able x with coefficients in F is denoted F [x]. The
units in F [x] are the nonzero constant polynomials.

Rings are studied extensively in our modern al-
gebra course.

Modules over a ring, and Abelian groups.
In the same way you can have vector spaces over
a field F , you can have modules over a ring R. In
fact, the eight axioms for a module over a ring are

identical to the eight axioms for a vectorspace over
a field, except that the scalars are taken in the ring
R instead of in a field.

For example, R[x] × R[x] is a module over the
ring R[x].

The axioms for modules over Z can be simplified
since scalar multiplication by elements of Z can be
reduced to addition. For example, 3a = a + a + a.
Because of that, we don’t need to specify all eight
axioms for modules over Z. The first four involving
addition are enough. Since the axioms can be given
entirely in terms of addition, modules over Z have
another name, Abelian groups. In other words, an
Abelian group is a set equipped with an operation
called addition that satisfies these four axioms

1. Addition is commutative: v + w = w + v for
all elements v and w;

2. Addition is associative: (u+v)+w = u+(v+w)
for all elements u, v, and w;

3. There is an element, denoted 0 and called zero,
such that v + 0 = v = 0 + v for each element
v; and

4. For each element v, there is another element,
denoted −v and called the negation of v, such
that v + (−v) = 0.

Examples of Abelian groups include Zn, the in-
tegers modulo n. (These are all rings as well if
you include multiplication, but if you only consider
them with the operation of addition, then they’re
Abelian groups.)

Where dimension doesn’t work. It generally
doesn’t work for modules over a ring. In fact, it
doesn’t work for Abelian groups.

For a small example take Z6, the integers modulo
6. It’s got 6 elements which we can denote 0, 1, 2,
3, 4, and 5. Addition is modulo 6, so, for example,
3 + 5 = 2.

Using our definition of spanning sets that we
used for vector spaces, we can find two different
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size minimal spanning sets. One spanning set is
just S = {1} since every elements in Z6 is a
integral multiple of 1. Another spanning set is
T = {b1, b2} = {2, 3}. Every element in Z6 is a
linear combination of b1 = 2 and b2 = 3. For ex-
ample, 4 = 2b2, 5 = b2 + b3, and 1 = 2b2 + b3. But
neither b1 nor b2 is a multiple of the other. Both
are required to span Z6.

Thus, the concept of dimension doesn’t work
here.

There is a classification of Abelian groups, but
it’s more complicated and depends on other con-
cepts. For modules over other rings than Z, the
situation is even more complicated.

So why does dimension work for vector
spaces? Well, it’s got to be because of division
somehow, and if you look at the proof of the re-
placement theorem that we used to prove that di-
mension works for vector spaces, you’ll see that
we used the fact that if we had dependent vectors
v1,v2, . . . ,vk,

c1v1 + c2v2 + · · ·+ ckvk = 0

then any vector with a nonzero coefficient can be
found as a linear combination of the others, and
that required division by that nonzero coefficient.

In a vector space, one element being a linear com-
bination of others is equivalent to 0 being a nontriv-
ial linear combination of them all. That equivalence
requires division.

Math 130 Home Page at
http://math.clarku.edu/~ma130/
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