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We discussed the rank and nullity of a linear
transformation earlier. Let’s summarize that dis-
cussion and emphasize what it means in terms of
matrices.

Definitions. For V
T→ W a linear transforma-

tion, the kernel or null space of T is ker(T ) =
T−1(0), while image or range of T is im(T ) = T (V ).
The nullity of T is the dimension of its kernel while
the rank of T is the dimension of its image. These
are denoted nullity(T ) and rank(T ), respectively.

Given coordinate systems for V and W , so that
every linear transformation T can be described by
a matrix A so that T (x) = Ax.

We define the kernel, image, rank, and nullity of
an m×n matrix A as the rank of the corresponding
linear transformation F n → Fm.

We showed directly from the definitions some
facts concerning ranks and nullity of compositions.
We showed that nullity(T ) ≤ nullity(U ◦ T ) and
rank(U ◦T ) ≤ rank(U). We can state that result in
terms of matrices.

Theorem 1. Given matrices A and B that can be
multiplied together,

nullity(B) ≤ nullity(AB)

and
rank(AB) ≤ rank(A).

The dimension theorem and its corollaries.
The dimension theorem said that for a linear trans-
formation V

T→ W , if the domain V is finite dimen-
sional, then

dim(V ) = rank(T ) + nullity(T ).

We can translate this as a theorem on matrices
where the matrix A represents the transformation
T .

Theorem 2 (Dimension theorem for matrices).
For an m× n matrix A

n = rank(A) + nullity(A).

We showed that a linear transformation V
T→ W

was one-to-one if and only if its nullity(T ) = 0.
Thus,

Theorem 3. A matrix A represents a one-to-one
transformation if and only if nullity(A) = 0.

We also showed that a linear transformation V
T→

W was an isomorphism if and only if nullity(T ) = 0
and rank(T ) = dim(W ). In that case, dim(V ) =
dim(W ). This yields the following theorem for ma-
trices.

Theorem 4. An n× n matrix A has an inverse if
and only if either of the following equivalent condi-
tions holds: rank(A) = n or nullity(A) = 0.

Row and column spaces. Let A be an m × n
matrix. It represents a linear transformation F n →
Fm.

Our definition of the rank of a matrix A implicitly
refers to the columns of A. The ith column of A is
the image of the basis vector ei in Fm. For example,
if A is the 2× 3 matrix[

a11 a12 a13
a21 a22 a23

]
Then the second column gives the image of e2 =
(0, 1, 0):

[
a11 a12 a13
a21 a22 a23

]0
1
0

 =

[
a12
a22

]

The rank of A is the dimension of the image in F n,
and that image is spanned by the vectors Aei, that
is, by the columns of A.

1



For that reason, the image of A, im(A), is often
called the column space of A; it’s the subspace of
Fm spanned by the columns of A.

What about the row space of A, the subspace
of F n spanned by the rows of A? We’ll look at
that next, and we’ll find that the row space and
the column space have the same dimension. (In
some textbooks, the dimensions of these two vector
spaces are called the column rank and the row rank,
then they show the two ranks are equal.)

Composition with isomorphisms doesn’t
change the rank. Let’s first look at this in terms
of linear transformations, then translate our results
into statements about matrices.

Theorem 5. Composing a linear transformation
with an isomorphism doesn’t change rank.

Proof. Let V
T→ W be a linear transformation, and

let V ′
R→ V and W

S→ W ′ be isomorphisms. Then

we’ll show that the two compositions T ◦R : V ′
R→

V
T→ W and S ◦ T : V

T→ W
S→ W ′ have the same

rank that T has.
For the first one, every vector in V is in the image

of R, so the image of T ◦R is identical to the image
of T , so they have the same rank.

For the second one, the isomorphism W
S→ W ′

restricts to an isomorphism im(T ) → im(S ◦ T )
since it’s a one-to-one correspondence that pre-
serves the vector space operations. Therefore im(T )
and im(S ◦ T ) have the same dimension. Thus,
rank(T ) = rank(S ◦ T ). q.e.d.

In terms of matrices, this says if you multiply
a matrix by an invertible square matrix, either on
the left or on the right, the resulting matrix has the
same rank.

Theorem 6. The elementary row operations and
the corresponding elementary column operations on
a matrix preserve the rank of a matrix.

Proof. An elementary row operation multiplies a
matrix by an elementary matrix on the left. Those

elementary matrices are invertible, so the row op-
erations preserve rank.

Elementary column operations will multiply a
matrix by an elementary matrix on the right, so
they’ll preserve rank, too. q.e.d.

By means of elementary row and column oper-
ations, you can always transform a matrix to one
in which there are only 0’s and 1’s, and the 1’s, if
there are any, start at the upper left corner and are
placed down and to the right, for example1 0 0 0

0 1 0 0
0 0 0 0


The transformed matrix has the same rank as the
original one, and its rank is equal to the number of
1’s in it. That can be read either as the number of
nonzero rows, or as the number of nonzero columns.
From this observation, we can derive the following
theorem.

Theorem 7. The rank of a matrix is equal to the
rank of its transpose. In other words, the dimension
of the column space equals the dimension of the row
space, and both equal the rank of the matrix.
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