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Just a little bit about sets. We’ll use the lan-
guage of sets throughout the course, but we’re not
using much of set theory. Still, it would be useful
to know a little bit about it.

A set itself is just supposed to be something that
has elements. It doesn’t have to have any struc-
ture but just have elements. The elements can be
anything, but usually they’ll be things of the same
kind.

If you’ve only got one set, however, there’s no
need to even mention sets. It’s when several sets
are under consideration that the language of sets
becomes useful.

There are ways to construct new sets, too, and
these constructions are important. The most im-
portant of these is a way to collect some of the
elements in a set to form another set, a subset of
the first.

Examples. Let’s start with sets of numbers.
There are ways of constructing these sets, but let’s
not deal with that now. Let’s assume that we al-
ready have these sets.

The natural numbers. These are the counting
numbers, that is, whole positive numbers. 1 is the
first natural number, 2 the second, 3, the third, etc.
We’ll use N to denote the set of all natural num-
bers. Some people like to include 0 in the natural
numbers, but I follow Dedekind who started with
1. There is a structure on N, namely there are op-
erations of addition, subtraction, etc., but as a set,
it’s just the numbers. You’ll often see N defined as

N = {1, 2, 3, . . .}

which is read as N is the set whose elements are 1, 2,
3, and so forth. That’s just an informal way of de-
scribing what N is. A complete description couldn’t
get away with “and so forth.” If you want to see
all of what “and so forth” entails, you can read
Dedekind’s 1888 paper Was sind und was sollen
die Zahlen? and my comments on it. In that arti-
cle he starts off developing set theory and ends up
with the natural numbers.

The real numbers. These include all positive
numbers, negative numbers, and 0. Besides the nat-
ural numbers, their negations and 0 are included,
fractions like 22

7
, algebraic numbers like

√
5, and

transcendental numbers like π, e. If a number can
be named decimally with infinitely many digits,
then it’s a real number. We’ll use R to denote the
set of all real numbers. Like N, R has lots of oper-
ations and functions associated with it, but treated
as a set, all it has is its elements, the real numbers.

Note that N is a subset of R since every natural
number is a real number.

Subsets. If you have a set and a language to talk
about elements in that set, then you can form sub-
sets of that set by properties of elements in that
language.

For instance, we have arithmetic on R, so solu-
tions to equations are subsets of R. The solutions
to the equation x3 = x are 0, 1, and −1. We can
describe its solution set using the notation

S = {x ∈ R |x3 = x}

which is read as “S is the set of x in R such that
x3 = x.” We could also describe that set by listing
its elements, S = {0, 1,−1}. When you name a
set by listing its elements, the order that you name
them doesn’t matter. We could have also written
S = {−1, 0, 1} for the same set.

Open and closed intervals in R are also subsets
of R. For example,

(3, 5) = {x ∈ R | 3 < x < 5}
[3, 5] = {x ∈ R | 3 ≤ x ≤ 5}
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There are a couple of notations for subsets. We’ll
use the notation A ⊆ S to say that A is a subset
of S. We allow S ⊆ S, that is, we consider a set
S to be a subset of itself. If a subset A doesn’t
include all the elements of S, then A is called a
proper subset of S. The only subset of S that’s not
a proper subset is S itself. We’ll use the notation
A ⊂ S to indicate that A is a proper subset of S.

(Warning. There’s an alternate notational con-
vention for subsets. In that notation A ⊂ S means
A is any subset of S, while A ( S means A is a
proper subset of S. I prefer the the notation we’re
using because it’s analogous to the notations ≤ for
less than or equal, and < for less than.)

Operations on subsets. Frequently you deal
with several subsets of a set, and there are oper-
ations of intersection, union, and difference that
describe new subsets in terms of previously known
subsets.

The intersection A ∩ B of two subsets A and B
of a given set S is the subset of S that includes all
the elements that are in both A and B:

A ∩B = {x ∈ S |x ∈ A and x ∈ B}.

The union A ∪ B of two subsets A and B of a
given set S is the subset of S that includes all the
elements that are in A or in B or in both:

A ∪B = {x ∈ S |x ∈ A or x ∈ B}.

As usual in mathematics, the word “or” means an
inclusive or and implicitly includes “or both.”

The difference A−B of two subsets A and B of
a given set S is the subset of S that includes all the
elements that are in A but not in B:

A−B = {x ∈ S |x ∈ A and x /∈ B}

There’s also the complement of a subset A of
a set S. The complement is just S − A, all the
elements of S that aren’t in A. When the set S is
understood, the complement of A often is denoted
more simply as either A or Ac.

These operations satisfy lots of identities. I’ll just
name a couple of important ones.

DeMorgan’s laws describe a duality between in-
tersection and union. They can be written as

A ∩B = A ∪B
A ∪B = A ∩B

The distributivity laws say that intersection and
union each distribute over the other

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

Products of sets. So far we’ve looked at creat-
ing sets within set. There are some operations on
sets that create bigger sets, the most important be-
ing creating products of sets. These depend on the
concept of ordered pairs of elements. The notation
for ordered pair (a, b) of two elements extends the
usual notation we use for coordinates in the xy-
plane. The important property of ordered pairs is
that two ordered pairs are equal if and only if they
have the same first and second coordinates:

(a, b) = (c, d) iff a = c and b = d.

The product of two sets S and T consists of all
the ordered pairs where the first element comes
from S and the second element comes from T :

S × T = {(a, b) | a ∈ S and b ∈ T}.

Thus, the usual xy-plane is R × R, usually de-
noted R2.

Besides binary products S × T , you can analo-
gously define ternary products S × T × U in terms
of triples (a, b, c) where a ∈ S, b ∈ T , and c ∈ U ,
and higher products, too.

Sets of subsets; power sets. Another way to
create bigger sets is to form sets of subsets. If you
collect all the subsets of a given set S into a set,
then the set of all those subsets is called the power
set of S, denotes P(S) or sometimes 2S.
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For example, let S be a set with 3 elements, S =
{a, b, c}. Then S has eight subsets. There are three
singleton subsets, that is, subsets having exactly
one element, namely {a}, {b}, and {c}. There are
three subsets having exactly two elements, namely
{a, b}, {a, c}, and {b, c}. There’s one subset having
all three elements, namely S itself. And there’s one
subset that has no elements. You could denote it
{}, but it’s always denoted ∅ and called the empty
set or null set. Thus, the power set of S has eight
elements

P(S) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, S}.

Functions and function sets. A function f :
S → T from a set S to a set T can be identified
with its graph. Its graph is a particular subset of
the product set S × T , namely, the subset

{(x, y) |x ∈ S and y = f(x)}.

You can tell which subsets A of S×T are graphs
of functions. They’re the ones with the following
property: for each x ∈ S, there is exactly ordered
pair in A whose first element is x.

It’s convenient to identify functions with such
graphs.

All the functions from S to T can be collected
together to form a set, sometimes called a function
set, and denoted either T S or F(S, T ). Since each
function is a subset of S × T , this function set is
actually a subset of the power set of S×T , that is,
F(S, T ) ⊆ P(S × T ).

Math 130 Home Page at
http://math.clarku.edu/~ma130/
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