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The abstract concept of vector space. There
are a lot of vector spaces besides the plane R2,
space R3, and higher dimensional analogues Rn.
These standard vector spaces are, perhaps, the
most used vector spaces, but there are many oth-
ers, so many that it makes sense to abstract the
vector operations of these standard vector spaces
and make a general definition. We’ll do that.

Real n-space has a lot of structure, some of which
we’ll require a vector space to have, but some we
won’t require. We won’t require, for instance, that
a vector space have a coordinate system. We will
require that a vector space have an operation of
vector addition and an operation of scalar multipli-
cation.

We won’t require that a vector space have a
length function that assigns a length ‖v‖ to a vec-
tor. We’ll save that for later when we study inner
product spaces.

Thus, for our vector spaces we abstract two of
the operations, vector addition and scalar multipli-
cation, from Rn, but we ignore any other structure
that Rn has.

Vector spaces over fields other than the real
numbers. Most of the time our scalars will be
real numbers. Sometimes, however, we’ll use other
fields like the complex numbers for our scalar fields.

You can have vector spaces over any field. All
that’s needed to have a field is a set equipped with
operations of addition, subtraction, multiplication,
and division with the usual properties. Thus, be-
sides the real field R and the complex field C,
there’s the field Q of rational numbers and many
others.

For the time being, think of the scalar field F as
being the field R of real numbers.

The precise definition. A vector space over a
scalar field F is defined to be a set V , whose ele-
ments we will call vectors, equipped with two oper-
ations, the first called vector addition, which takes
two vectors v and w and yields another vector, usu-
ally denoted v + w, and the second called scalar
multiplication, which takes a scalar c and a vector
v and returns another vector, usually denoted cv,
such that the following properties (called axioms)
all hold

1. Vector addition is commutative: v+w = w+v
for all vectors v and w;

2. Vector addition is associative: (u + v) + w =
u + (v + w) for all vectors u, v, and w;

3. There is a vector, denoted 0 and called the zero
vector, such that v + 0 = v = 0 + v for each
vector v;

4. For each vector v, there is another vector, de-
noted −v and called the negation of v, such
that v + (−v) = 0;

5. 1 acts as the identity for scalar multiplication:
1v = v for each vector v;

6. Multiplication and scalar multiplication asso-
ciate: c(dv) = (cd)v for for all real numbers c
and d and each vector v;

7. Scalar multiplication distributes (on the left)
over vector addition: c(v + w) = cv + cw for
each real number c and all vectors v and w;
and

8. Scalar multiplication distributes (on the right)
over real addition: (c + d)v = cv + dv for all
real numbers c and d and each vector v.

That’s a long definition, but it has to be long if
we want an abstract vector space to have all the

1

http://math.clarku.edu/~djoyce/ma130/vectors.pdf
http://math.clarku.edu/~djoyce/ma130/fields.pdf


properties that Rn has, at least with respect to
vector addition and scalar multiplication.

Lots of other properties follow from these axioms,
such as 0v = 0, and we’ll discuss those properties
next time. For now, just note that subtraction can
be defined in terms of addition and scalar multipli-
cation by −1 by

v −w = v + (−1)w.

Thus, we don’t need to have separate axioms to
deal with subtraction.

Examples. Of course n-space, Rn, is a vector
space. R itself is a vector space; it’s R1.

But what other vector spaces are there? Quite a
few. Most will be finite dimensional like Rn is, but
some will be infinite dimensional. We haven’t yet
defined dimension, but we will, and we’ll define it
in such a way that n-space has dimension n. Also,
most of the other examples we’ll look at have some
other structure besides the structure for being vec-
tor spaces. That other structure isn’t needed for
the examples to be vector spaces.

Products. Given two vector spaces V and W ,
their product V ×W is a vector space where the op-
erations are defined coordinatewise. If (v,w) and
(x,y) are two elements of V ×W , then their sum
(v,w) + (x,y) is defined in terms of the addition
operations on V and W by

(v,w) + (x,y) = (v + x,w + y),

and if c is a scalar, then the scalar product c(v,w)
is defined by

c(v,w) = (cv, cw).

Indeed, R2 is just R×R.

Products of any number of vector spaces are de-
fined analogously. R3 is just R×R×R.

Some infinite dimensional vector spaces.
Consider the set of all infinite sequences
(a1, a2, a3, . . .) of real numbers. They form
the vector space R∞. Addition and scalar multi-
plication are performed coordinatewise just like in
Rn. In fact, R∞ is just an infinite product of R’s.

There are a couple of interesting subspaces of
R∞. One is where only those sequences which ap-
proach 0 are included, lim

n→∞
an = 0. These form a

vector space because if two sequences approach 0,
so does their sum. Also, any constant multiple of a
sequence that approaches 0 also approaches 0.

Another subspace consists only of sequences that
have a finite number of nonzero elements. So
(a1, a2, a3, . . .) is included only if all the elements
are 0 from some point on.

Although they’re not finite dimensional, they
don’t have the same infinite dimensions. A dis-
cussion of their transfinite dimensions goes beyond
what we can do in this course. If you study set the-
ory, you may see that the first two examples have
a dimension which is a cardinality greater than the
third.

Polynomials. Let R[x] be the set of all polyno-
mials with real coefficients in the variable x. (More
generally, if F is any field, let F [x] be the set of all
polynomials in the variable x with coefficients in
the field F . Our text uses the notation P (F ), but
that’s not the usual notation.) Here, x is a formal
symbol, so think of a polynomial like x2 − 3x + 2
as being an expression rather than a function.

The set R[x] has operations of addition, subtrac-
tion, and multiplication, but not division. We don’t
need all those operations to treat R[x] as a vector
space over R. We only need to be able to add poly-
nomials and multiply them by real numbers. Since
every one of the required properties hold for these
two operations (since they’re just addition and mul-
tiplication), therefore R[x] is a vector space.

When we discuss dimension, we’ll see that this
vector space will not have a finite dimension. It’s
an infinite dimensional vector space.
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Inside it there are a lot of finite dimensional sub-
spaces.

Fix a positive integer n. Let Pn be the subset
of R[x] consisting of all the polynomials of degree
n or less. For instance, 5x4 + 3x2 − 7 is a poly-
nomial of degree 4, so it’s an element of P4, and
it’s an element of all Pn for n ≥ 4, too. This set
Pn is closed under the operation of addition be-
cause when we add two polynomials of degree n
or less, their sum also has degree n or less. Like-
wise, the degree doesn’t increase when we can mul-
tiply a polynomial by a real number. So Pn has the
two operations required to be a vector space. Fur-
thermore, every one of the required properties hold
for these two operations (since they’re just addition
and multiplication), so Pn is a vector space.

Note that Pn doesn’t have a coordinate system
(but it isn’t hard to give it one), and Pn doesn’t
have a length function, but it’s still a vector space.

When we finally define the dimension of Pn, we’ll
see its dimension is n + 1. (Why n + 1? Why isn’t
its dimension n?)

Functions. We can generalize the last example
to all functions. Consider the set of all real-valued
functions with domain some fixed set S. Then,
since we can add two functions, and we can multiply
a function by a real constant, and all the properties
hold, this is another vector space.

There are many modifications you can make to
get related vector spaces. For instance, you can
consider only continuous functions. Or you could
consider only differentiable functions. Each one of
these variants is a vector space.

Solutions to homogeneous linear differential
equations with constant coefficients. Some
of the most useful differential equations are of this
type. For example, the exponential differential
equation y′ = ky has the exponential functions
Aekt as its solutions, where A is an arbitrary con-
stant. These functions, taken together, form a one-
dimensional vector space.

For another example, the second order differen-
tial equation y′′ = −y has the sine wave functions

A cos t + B sin t

as its solutions, where A and B are arbitrary con-
stants. These functions form a two-dimensional
vector space.

In general, the solutions to differential equations
of this type form a vector space.

A homogeneous linear differential equations with
constant coefficients of degree n is a differential
equation of the form

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = 0.

If two functions f and g both satisfy this differential
equation, then so does f + g, and if c is a constant
then the function cf also satisfies it. In a course
in differential equations, you’ll learn how to solve
the equation and see that its solutions form an n-
dimensional vector space.

Matrices. Before long we’ll be using matrices in
this course. For now, a matrix is just a rectangular
arrangement of scalars. For example,[

9 0 3
4 −1 2

]
is a matrix with two rows and three columns.

There’s some standard terminology and notation
for matrices. When a single symbol is used to de-
note an entire matrix, it’s usually a capital letter,
like A or B.

Usually m is used for the number of rows and n
for the number of columns. Such a matrix is called
an m× n matrix.

When m = n we say the matrix is a square ma-
trix.

When m = 1, the matrix only has one row, and
it’s called a row vector. Likewise, when n = 1,
the matrix has only one column, and it’s called a
column vector.
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When symbols are used for the elements (that
is, entries) of a matrix, they are often doubly in-
dexed (that is, subscripted), and the indices indi-
cate where the entry is located. For instance, a34
indicates the element in the 3rd row and 4th col-
umn. Note that the first index gives the row num-
ber and the second index gives the column number.
When a generic row is needed, usually i is used, and
when a generic column is needed, usually j is used.
So aij is the element in the ith row and jth column.

A =



a11 a12 · · · a1j · · · a1n
a21 a22 · · · a2j · · · a2n
...

...
. . .

...
...

ai1 ai2 · · · aij · · · ain
...

...
...

. . .
...

am1 am2 · · · amj · · · amn


The name of the matrix is sometimes subscripted
to access its entries, for instance, for the matrix A
above, A23 denotes the entry a23.

Fix m and n and consider the set Mmn(R) of
all m × n matrices with real entries. We’ll turn
Mmn(R) into a vector space over R by defining ad-
dition and scalar multiplication coordinatewise. So
the sum of two m×n matrices A+B is defined by
saying (A+B)ij = Aij+Bij, and if c is a scalar, then
cA is defined by (cA)ij = cAij, where i denotes any
row number and j denotes any column number. All
the axioms for a vector space automatically follow.

In fact, the vector space Mmn(R) is the same
as the vector space Rmn except the scalars are ar-
ranged in a rectangular array instead of being listed
in an mn-tuple. The way to express that is to
say that Mmn(R) and Rmn are isomorphic vector
spaces. We’ll have more to say about isomorphisms
later.

Subspaces. We will be particularly interested in
subspaces of vector spaces. A subspace of a vector
space is just a subset of the vector space that is itself
a vector space with the same operations. We’ve
seen some of those above.

Let’s look at some subspaces of the plane R2.

Consider the set of vectors (that is, points) of the
form (3t, 2t) in R2.
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2x+y=0

It’s the line 2x − 3y = 0 through the origin. It’s a
vector space because the sum of any two vectors in
it is another vector in it, and a scalar multiple of
any vector in it is another vector in it. The diagram
shows four 1-dimensional subspaces of the plane.
There’s the line 2x − 3y = 0, the line 2x + y = 0,
the x-axis y = 0, and the y-axis x = 0.

There’s much more on subspaces to come later.

Math 130 Home Page at
http://math.clarku.edu/~ma130/
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