Math 131 Multivariate Calculus
 Final Answers
 May 2010

Scale. ...

1. $[16 ; 8$ points each part $]$ On conservative vector fields. We proved that a conservative vector field \mathbf{F} on a simply connected region is the gradient of some scalar field f.
a. Verify that the vector field \mathbf{F} given by $\mathbf{F}(x, y, z)=(2 x+$ $y, x+\cos z,-y \sin z)$ has curl 0 .

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\nabla \times \mathbf{F} \\
& =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times\left(F_{1}, F_{2}, F_{3}\right) \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \\
& =(-\sin z+\sin z, 0-0,1-1)=(0,0,0)
\end{aligned}
$$

b. Find a scalar potential field f on \mathbf{R}^{3} whose gradient is F.

Since $\frac{\partial f}{\partial x}=2 x+y$, therefore $f(x, y, z)=x^{2}+x y+C(y, z)$ where $C(y, z)$ can depend on y and z but not on x. Take $\frac{\partial}{\partial y}$ to see that we need $x+\frac{\partial}{\partial y} C(y, z)=x+\cos z$. Therefore, $C(y, z)=y \cos z$ plus some function of z. The function

$$
f(x, y, z)=x^{2}+x y+y \cos z
$$

will do since its derivative with respect to z is $-y \sin z$ as required.
2. [16] On Green's theorem. Recall that Green's theorem equates a path integral over the boundary of a twodimensional region D to a double integral over D.

$$
\oint_{\partial D} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Let \mathbf{F} be the vector field defined on \mathbf{R}^{2} by $\mathbf{F}(x, y)=$ $\left(y^{2}, x^{2}\right)$. Let C be the path formed by the square with vertices $(0,0),(1,0),(1,1)$, and $(0,1)$, oriented counterclockwise. Use Green's theorem to convert the vector line integral $\oint_{C} \mathbf{F} \cdot d \mathbf{s}$ into a double integral. Your double integral should have only the variables x and y, and it should have limits of integration for both x and y. Don't evaluate the resulting double integral.

The closed curve C is the boundary ∂D of the unit square D, so by Green's theorem, the vector line integral is equal to

$$
\int_{D}\left(\frac{\partial}{\partial x} x^{2}-\frac{\partial}{\partial y} y^{2}\right) d x d y=\int_{0}^{1} \int_{0}^{1}(2 x-2 y) d x d y
$$

3. $[18 ; 6$ points each part] On scalar line integrals. Recall that the scalar line integral of a scalar field f on a path parameterized by \mathbf{x} is

$$
\int_{\mathbf{x}} f d s=\int_{a}^{b} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t
$$

Tom Sawyer is whitewashing a picket fence. The base of the fenceposts are arranged in the (x, y)-plane as the quarter circle $x^{2}+y^{2}=25$ for $x, y \geq 0$, and the height of the fencepost at point (x, y) is given by $h(x, y)=10-x-y$. In this problem, you will use a scalar line integral to find the area of one side of the fence.
a. Parameterize the quarter circle by a path $\mathbf{x}(t)$. Be sure to include the limits for the parameter t.
$\mathbf{x}(t)=(5 \cos t, 5 \sin t)$ for $0 \leq t \leq \pi / 2$.
b. Compute the velocity $\mathbf{x}^{\prime}(t)$ and speed $\left\|\mathbf{x}^{\prime}\right\|$ for your parameterization.

For this path, the velocity is $\mathbf{x}^{\prime}(t)=(-5 \sin t, 5 \cos t)$, so the speed is $\left\|\mathbf{x}^{\prime}(t)\right\|=5$.
c. Write down a scalar line integral of h over the path, and evaluate that integral.

$$
\begin{aligned}
\int_{\mathbf{x}}(10-x-y) d s & =\int_{0}^{\pi / 2}(10-x-y)\left\|\mathbf{x}^{\prime}(t)\right\| d t \\
& =5 \int_{0}^{\pi / 2}(10-5 \cos t-5 \sin t) d t \\
& =25(\pi-2)
\end{aligned}
$$

4. [16] On scalar surface integrals. Recall that the integral of a scalar field f over a surface parameterized by \mathbf{X} is

$$
\iint_{\mathbf{X}} f d S=\iint_{D} f(\mathbf{X}(s, t))\|\mathbf{N}(s, t)\| d s d t
$$

Evaluate the scalar surface integral $\iint_{\mathbf{X}} z^{3} d S$ where \mathbf{X} is the parameterization of the unit hemisphere $\mathbf{X}(s, t)=$ $(\cos s \sin t, \sin s \sin t, \cos t)$ for $0 \leq s \leq 2 \pi$ and $0 \leq t \leq \pi / 2$. You may use the fact that the length of the normal vector $\mathbf{N}(s, t)$ is equal to $\sin t$. Carry out your evaluatation until you get an ordinary double integral in terms of s and t. You don't have to evaluate that integral.

$$
\begin{aligned}
\iint_{\mathbf{X}} z^{3} d S & =\iint_{D} \cos ^{3} t|\sin t| d s d t \\
& =\int_{0}^{\pi / 2} \int_{0}^{2 \pi} \cos ^{3} t \sin t d s d t
\end{aligned}
$$

5. [20; 5 points each part] On Gauss's theorem. Recall that Gauss's theorem, also known as the divergence theorem, says that the integral of \mathbf{F} over ∂D equals the divergence of \mathbf{F} over the region D.

$$
\iint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

Let D be the segment of a paraboloid $D=\{(x, y, z) \in$ $\left.\mathbf{R}^{3} \mid 0 \leq z \leq 9-x^{2}-y^{2}\right\}$ and let \mathbf{F} be the radial vector field given by $\mathbf{F}(x, y, z)=(x, y, z)$.
a. Write down the triple integral $\iiint_{D} \nabla \cdot \mathbf{F} d V$ in terms of x, y, and z with limits of integration for each. Don't evaluate the integral.

The divergence of \mathbf{F} is $\nabla \cdot \mathbf{F}=1+1+1=3$. One way to paramterize the integral is

$$
\iiint_{D} 3 d V=\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \int_{0}^{9-x^{2}-y^{2}} 3 d z d y d x
$$

b. The boundary ∂D comes in two parts- S_{1}, the upper parabolic surface, and S_{2}, the lower surface which is a circle of radius 3 in the x, y-plane. Parameterize the surface S_{1}.

There are various ways to do that. Here's one. Take x and y to be the parameters. You could leave them as x and y, but I'll write them as s and t for clarity. Then $x=s, y=t$ and $z=9-s^{2}-t^{2}$, where $-3 \leq s \leq 3$ and $-\sqrt{9-s^{2}} \leq t \leq \sqrt{9-s^{2}}$
c. Compute the normal vector \mathbf{N} for the parameterization you chose in part \mathbf{b}. You'll use \mathbf{N} in part \mathbf{d}.

There are various ways to compute \mathbf{N}. You could use the formula $\mathbf{N}=\left(-f_{x},-f_{t}, 1\right)$ that we developed in class for the normal for the graph of a function $z=f(x, y)=f(s, t)$.

Here's a way to compute \mathbf{N} that uses Jacobians. It leads to the formula mentioned above.

$$
\begin{aligned}
\mathbf{N}(s, t) & =\left(\frac{\partial(y, z)}{\partial(s, t)}, \frac{\partial(x, z)}{\partial(s, t)}, \frac{\partial(x, y)}{\partial(s, t)}\right) \\
& =\left(\frac{\partial y}{\partial s} \frac{\partial z}{\partial t}-\frac{\partial y}{\partial t} \frac{\partial z}{\partial s}, \frac{\partial x}{\partial s} \frac{\partial z}{\partial t}-\frac{\partial x}{\partial t} \frac{\partial z}{\partial s}, \frac{\partial x}{\partial s} \frac{\partial y}{\partial t}-\frac{\partial x}{\partial t} \frac{\partial y}{\partial s}\right) \\
& =\left(-\frac{\partial z}{\partial x},-\frac{\partial z}{\partial t}, 1\right) \\
& =(2 x, 2 y, 1)
\end{aligned}
$$

d. Recall that the vector surface integral of a vector field \mathbf{F} on a surface parameterized by \mathbf{X} is

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) d s d t
$$

Write down the surface integral $\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}$ for the upper parabolic surface in terms of the two variables you used in
your parameterization of S_{1} with limits of integration for those two variables. No other variables should appear in your final integral. Don't evaluate the integral.

$$
\begin{aligned}
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S} & =\iint_{S_{1}} \mathbf{F} \cdot \mathbf{N} d s d t \\
& =\int_{-3}^{3} \int_{-\sqrt{9-s^{2}}}^{\sqrt{9-s^{2}}}(x, y, z) \cdot(2 x, 2 y, 1) d t d s \\
& =\int_{-3}^{3} \int_{-\sqrt{9-s^{2}}}^{\sqrt{9-s^{2}}}\left(2 x^{2}+2 y^{2}+z\right) d t d s \\
& =\int_{-3}^{3} \int_{-\sqrt{9-s^{2}}}^{\sqrt{9-s^{2}}}\left(2 s^{2}+2 t^{2}+9-s^{2}-t^{2}\right) d t d s \\
& =\int_{-3}^{3} \int_{-\sqrt{9-s^{2}}}^{\sqrt{9-s^{2}}}\left(9+s^{2}+t^{2}\right) d t d s
\end{aligned}
$$

6. [16] On change of variables and the Jacobian.

Parabolic coordinates. The relevant equations to convert between rectangular coordinates (x, y) and parabolic coordinates (u, v) are

$$
\begin{array}{rlrl}
x=u v & u & =\sqrt{\sqrt{x^{2}+y^{2}}+y} \\
y=\frac{1}{2}\left(u^{2}-v^{2}\right) & v & =\sqrt{\sqrt{x^{2}+y^{2}}-y}
\end{array}
$$

A double integral can be converted from rectangular coordinates to parabolic coordinates using a Jacobian. The area differential $d A=d x d y$ is equal to $\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v$.
Determine the Jacobian $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$.

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v} \\
& =-v^{2}-u^{2}
\end{aligned}
$$

The area differential includes an absolute value, and that's $v^{2}+u^{2}$.

