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1. [16; 8 points each part] On conservative vector fields.
We proved that a conservative vector field F on a simply
connected region is the gradient of some scalar field f .

a. Verify that the vector field F given by F(x, y, z) = (2x+
y, x+ cos z,−y sin z) has curl 0.
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= (− sin z + sin z, 0− 0, 1− 1) = (0, 0, 0)

b. Find a scalar potential field f on R3 whose gradient is
F.

Since ∂f
∂x = 2x+y, therefore f(x, y, z) = x2 +xy+C(y, z)

where C(y, z) can depend on y and z but not on x. Take ∂
∂y

to see that we need x + ∂
∂yC(y, z) = x + cos z. Therefore,

C(y, z) = y cos z plus some function of z. The function

f(x, y, z) = x2 + xy + y cos z

will do since its derivative with respect to z is −y sin z as
required.

2. [16] On Green’s theorem. Recall that Green’s theo-
rem equates a path integral over the boundary of a two-
dimensional region D to a double integral over D.∮

∂D

M dx+N dy =
∫∫

D

(
∂N

∂x
− ∂M

∂y

)
dx dy.

Let F be the vector field defined on R2 by F(x, y) =
(y2, x2). Let C be the path formed by the square with ver-
tices (0, 0), (1, 0), (1, 1), and (0, 1), oriented counterclock-
wise. Use Green’s theorem to convert the vector line integral∮
C

F ·ds into a double integral. Your double integral should

have only the variables x and y, and it should have limits of
integration for both x and y. Don’t evaluate the resulting
double integral.

The closed curve C is the boundary ∂D of the unit square
D, so by Green’s theorem, the vector line integral is equal
to ∫

D

(
∂

∂x
x2 − ∂

∂y
y2

)
dx dy =

∫ 1

0

∫ 1

0

(2x− 2y) dx dy.

3. [18; 6 points each part] On scalar line integrals. Recall
that the scalar line integral of a scalar field f on a path
parameterized by x is∫

x

f ds =
∫ b

a

f(x(t))‖x′(t)‖ dt.

Tom Sawyer is whitewashing a picket fence. The base of
the fenceposts are arranged in the (x, y)-plane as the quar-
ter circle x2 + y2 = 25 for x, y ≥ 0, and the height of the
fencepost at point (x, y) is given by h(x, y) = 10− x− y. In
this problem, you will use a scalar line integral to find the
area of one side of the fence.
a. Parameterize the quarter circle by a path x(t). Be sure
to include the limits for the parameter t.

x(t) = (5 cos t, 5 sin t) for 0 ≤ t ≤ π/2.
b. Compute the velocity x′(t) and speed ‖x′‖ for your pa-
rameterization.

For this path, the velocity is x′(t) = (−5 sin t, 5 cos t), so
the speed is ‖x′(t)‖ = 5.
c. Write down a scalar line integral of h over the path, and
evaluate that integral.∫

x

(10− x− y) ds =
∫ π/2

0

(10− x− y) ‖x′(t)‖ dt

= 5
∫ π/2

0

(10− 5 cos t− 5 sin t) dt

= 25(π − 2)

4. [16] On scalar surface integrals. Recall that the integral
of a scalar field f over a surface parameterized by X is∫∫

X

f dS =
∫∫

D

f(X(s, t)) ‖N(s, t)‖ ds dt

Evaluate the scalar surface integral
∫∫

X

z3 dS where X

is the parameterization of the unit hemisphere X(s, t) =
(cos s sin t, sin s sin t, cos t) for 0 ≤ s ≤ 2π and 0 ≤ t ≤ π/2.
You may use the fact that the length of the normal vector
N(s, t) is equal to sin t. Carry out your evaluatation until
you get an ordinary double integral in terms of s and t. You
don’t have to evaluate that integral.∫∫

X

z3 dS =
∫∫

D

cos3 t | sin t| ds dt

=
∫ π/2

0

∫ 2π

0

cos3 t sin t ds dt
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5. [20; 5 points each part] On Gauss’s theorem. Recall that
Gauss’s theorem, also known as the divergence theorem, says
that the integral of F over ∂D equals the divergence of F
over the region D.∫∫

∂D

F · dS =
∫∫∫

D

∇ · F dV

Let D be the segment of a paraboloid D = {(x, y, z) ∈
R3 | 0 ≤ z ≤ 9 − x2 − y2} and let F be the radial vector
field given by F(x, y, z) = (x, y, z).

a. Write down the triple integral
∫∫∫

D

∇ · F dV in terms

of x, y, and z with limits of integration for each. Don’t
evaluate the integral.

The divergence of F is ∇ ·F = 1 + 1 + 1 = 3. One way to
paramterize the integral is∫∫∫

D

3 dV =
∫ 3

−3

∫ √9−x2

−
√

9−x2

∫ 9−x2−y2

0

3 dz dy dx

b. The boundary ∂D comes in two parts—S1, the upper
parabolic surface, and S2, the lower surface which is a circle
of radius 3 in the x, y-plane. Parameterize the surface S1.

There are various ways to do that. Here’s one. Take
x and y to be the parameters. You could leave them as
x and y, but I’ll write them as s and t for clarity. Then
x = s, y = t and z = 9 − s2 − t2, where −3 ≤ s ≤ 3 and
−
√

9− s2 ≤ t ≤
√

9− s2

c. Compute the normal vector N for the parameterization
you chose in part b. You’ll use N in part d.

There are various ways to compute N. You could use the
formula N = (−fx,−ft, 1) that we developed in class for the
normal for the graph of a function z = f(x, y) = f(s, t).

Here’s a way to compute N that uses Jacobians. It leads
to the formula mentioned above.
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= (2x, 2y, 1)

d. Recall that the vector surface integral of a vector field F
on a surface parameterized by X is∫∫

X

F · dS =
∫∫

D

F(X(s, t)) ·N(s, t) ds dt.

Write down the surface integral
∫∫

S1

F · dS for the upper

parabolic surface in terms of the two variables you used in

your parameterization of S1 with limits of integration for
those two variables. No other variables should appear in
your final integral. Don’t evaluate the integral.

∫∫
S1

F · dS =
∫∫

S1

F ·N ds dt

=
∫ 3

−3

∫ √9−s2

−
√

9−s2
(x, y, z) · (2x, 2y, 1) dt ds

=
∫ 3

−3

∫ √9−s2

−
√

9−s2
(2x2 + 2y2 + z) dt ds

=
∫ 3

−3

∫ √9−s2

−
√

9−s2
(2s2 + 2t2 + 9− s2 − t2) dt ds

=
∫ 3

−3

∫ √9−s2

−
√

9−s2
(9 + s2 + t2) dt ds

6. [16] On change of variables and the Jacobian.
Parabolic coordinates. The relevant equations to convert

between rectangular coordinates (x, y) and parabolic coor-
dinates (u, v) are

x = uv u =
√√

x2 + y2 + y

y = 1
2 (u2 − v2) v =

√√
x2 + y2 − y

A double integral can be converted from rectangular coor-
dinates to parabolic coordinates using a Jacobian. The area

differential dA = dx dy is equal to
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ du dv.

Determine the Jacobian
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣.
∂(x, y)
∂(u, v)

=
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

= −v2 − u2

The area differential includes an absolute value, and that’s
v2 + u2.
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