Name: \qquad
Mailbox number:

Math 131 Multivariate Calculus
 First Test

You may refer to one sheet of notes on this test. You may leave your answers as expressions such as $e^{2} \sqrt{\frac{\sin ^{2}(\pi / 6)}{1-\ln 10}}$ if you like. Show all your work for credit. Points for each problem are in square brackets.

Problem 1. [18; 6 points each part] On functions of several variables.
a. Give an example of a function $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}^{3}$ and another example $g: \mathbf{R}^{3} \rightarrow \mathbf{R}$.
b. Give an example of a vector-valued function \mathbf{f} whose domain is the set

$$
\left\{(x, y) \in \mathbf{R}^{2} \mid x>0 \text { and } y>0\right\} .
$$

c. Explain why all the level curves for $f(x, y)=x^{2}+y^{2}$ at positive heights c are circles.

Problem 2. [20; 10 points each part] On limits and continuity.
a. Explain why the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$, does not exist.
b. Explain why the function $f(x, y)=\sin (3 x+2 y)$ is continous throughout its domain.

Problem 3. [32; 8 points each part] On derivatives.
a. Compute the gradient ∇f if $f(x, y, z)=e^{x+y z}$.
b. Find $\frac{\partial^{2} f}{\partial x \partial y}$ for the function f given in part a.
c. For the function f in part a determine the directional derivative in the direction $\mathbf{u}=$ ($0, \frac{3}{5}, \frac{4}{5}$).
d. Find the derivative $D \mathbf{f}$ if $\mathbf{f}(x, y)=\left(x^{3}+3 x^{2} y+3 x y^{2}+y^{3}, \sin x+\cos y, x / y\right)$.

Problem 4. [15] On the chain rule. Suppose that $f: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ has the derivative

$$
D \mathbf{f}(x, y)=\left[\begin{array}{ccc}
\sin y & x \cos y & 0 \\
2 x & 2 y & 2 z
\end{array}\right]
$$

and $\mathbf{x}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ has the derivative $D \mathbf{f}(s, t)=\left[\begin{array}{cc}2 s & 0 \\ 2 t & 2 s \\ 0 & 2 t\end{array}\right]$.
a. [5] The derivative $D(\mathbf{f} \circ \mathbf{x})(s, t)$ is a matrix. What size is that matrix?
b. [10] Find the derivative $D(\mathbf{f} \circ \mathbf{x})(s, t)$. (You may leave your answer in terms of the variables x, y, z, s, and t.)

Problem 5. [16; 4 points each part] On paths.
a. Give an example of a path $\mathbf{x}: \mathbf{R} \rightarrow \mathbf{R}^{2}$ that passes through the point $(2,4) \in \mathbf{R}^{2}$.
b. What is its velocity as it passes through $(2,4)$?
c. What is its speed as it passes through $(2,4)$?
d. What is its acceleration as it passes through $(2,4)$?

$\# 1 .[18]$	
$\# 2 .[20]$	
$\# 3 .[32]$	
$\# 4 .[15]$	
$\# 5 .[16]$	
Total	

