Math 131 Multivariate Calculus

First Test Answers
Feb. 2010

Scale. $90-101$ A, 80-89 B, 65-79 C. Median 95.

Problem 1. [18; 6 points each part] On functions of several variables.
a. Give an example of a function $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}^{3}$ and another example $g: \mathbf{R}^{3} \rightarrow \mathbf{R}$.

Typical sample functions are

$$
\mathbf{f}(t)=(\cos t, \sin t, t)
$$

and

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}
$$

b. Give an example of a vector-valued function \mathbf{f} whose domain is the set

$$
\left\{(x, y) \in \mathbf{R}^{2} \mid x>0 \text { and } y>0\right\}
$$

A typical one is $\mathbf{x}(x, y)=(\ln x, \ln y)$.
c. Explain why all the level curves for $f(x, y)=x^{2}+y^{2}$ at positive heights c are circles.

The level curve for f at height c has the equation $x^{2}+y^{2}=$ c, which is the equation of a circle of radius \sqrt{c} in the plane $z=c$.

Problem 2. [20; 10 points each part] On limits and continuity.
a. Explain why the limit, $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$, does not exist.

One explanation: as $(x, y) \rightarrow(0,0)$ along either the x-axis or the y-axis, the expression is constantly 0 . But along some other line, say $y=x$,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{2 x^{2}}=\frac{1}{2}
$$

Since the limiting value depends on the approach, the limit doesn't exist.
b. Explain why the function $f(x, y)=\sin (3 x+2 y)$ is continous throughout its domain.

It's the composition of two continuous functions, namely, the sine function and a polynomial.

Problem 3. [32; 8 points each part] On derivatives.
a. Compute the gradient ∇f if $f(x, y, z)=e^{x+y z}$.

$$
\begin{aligned}
\nabla f(x, y, z) & =\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \\
& =\left(e^{x+y z}, z e^{x+y z}, y e^{x+y z}\right)
\end{aligned}
$$

b. Find $\frac{\partial^{2} f}{\partial x \partial y}$ for the function f given in part a.

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x} z e^{x+y z}=z e^{x+y z}
$$

c. For the function f in part a determine the directional derivative in the direction $\mathbf{u}=\left(0, \frac{3}{5}, \frac{4}{5}\right)$.

$$
\nabla f(x, y, z) \cdot \mathbf{u}=0 e^{x+y z}+\frac{3}{5} z e^{x+y z}+\frac{4}{5} y e^{x+y z}
$$

d. Find the derivative $D \mathbf{f}$ if

$$
\mathbf{f}(x, y)=\left(x^{3}+3 x^{2} y+3 x y^{2}+y^{3}, \sin x+\cos y, x / y\right)
$$

Since $\mathbf{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$, therefore $D \mathbf{f}$ is a 3×2 matrix.

$$
D \mathbf{f}=\left[\begin{array}{cc}
3 x^{2}+6 x y+3 y^{2} & 3 x^{2}+6 x y+3 y^{2} \\
\cos x & -\sin y \\
1 / y & -x / y^{2}
\end{array}\right]
$$

Problem 4. [15] On the chain rule. Suppose that f : $\mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ has the derivative

$$
D \mathbf{f}(x, y)=\left[\begin{array}{ccc}
\sin y & x \cos y & 0 \\
2 x & 2 y & 2 z
\end{array}\right]
$$

and $\mathbf{x}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ has the derivative

$$
D \mathbf{f}(s, t)=\left[\begin{array}{cc}
2 s & 0 \\
2 t & 2 s \\
0 & 2 t
\end{array}\right]
$$

a. [5] The derivative $D(\mathbf{f} \circ \mathbf{x})(s, t)$ is a matrix. What size is that matrix?

Since $\mathbf{f} \circ \mathbf{x}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$, it's a 2×2 matrix.
b. [10] Find the derivative $D(\mathbf{f} \circ \mathbf{x})(s, t)$. (You may leave your answer in terms of the variables x, y, z, s, and t.)

$$
D(\mathbf{f} \circ \mathbf{x})(s, t)=\left[\begin{array}{cc}
2 s \sin y+2 t x \cos y & 2 s x \cos y \\
4 s x+4 t y & 4 s y+4 t z
\end{array}\right]
$$

Problem 5. [16; 4 points each part] On paths.
a. Give an example of a path $\mathbf{x}: \mathbf{R} \rightarrow \mathbf{R}^{2}$ that passes through the point $(2,4) \in \mathbf{R}^{2}$.

For example, $\mathbf{x}(t)=(x(t), y(t))=\left(t, t^{2}\right)$. The path goes through $(2,4)$ when $t=2$.
b. What is its velocity as it passes through $(2,4)$?

For the example, $\mathbf{x}^{\prime}(t)=(1,2 t)$. So at $t=2, \mathbf{x}^{\prime}(2)=$ $(2,4)$.
c. What is its speed as it passes through $(2,4)$?

$$
\left\|\mathbf{x}^{\prime}(2)\right\|=\sqrt{2^{2}+4^{2}}=\sqrt{20}
$$

d. What is its acceleration as it passes through $(2,4)$?

$$
\mathbf{x}^{\prime \prime}(t)=\left(x^{\prime \prime}(t), y^{\prime \prime}(t)\right)=(0,2)
$$

