\qquad

Mailbox number: \qquad

Math 131 Multivariate Calculus Second Test

You may refer to one sheet of notes on this test. You may leave your answers as expressions such as $e^{2} \sqrt{\frac{\sin ^{2}(\pi / 6)}{1-\ln 10}}$ if you like. Show all your work for credit. Points for each problem are in square brackets.

1. $\left[20 ; 10\right.$ points each part] Consider the path in \mathbf{R}^{2} given by $\mathbf{x}(t)=\left(t^{2}, \frac{2}{3}(2 t+1)^{3 / 2}\right)$ for $0 \leq t \leq 4$.
a. Write down an integral which gives the length of that path.
b. Evaluate that integral
2. [15] Show that the vector field $\mathbf{F}(x, y, z)=\left(10 x+2 x z^{2}, 28 y^{3}, 2 x^{2} z\right)$ is irrotational.
3. [15] Calculate the Hessian matrix $H f(\mathbf{a})$ for the scalar field $f(x, y, z)=x^{3}+x^{2} y-y z^{2}+2 z^{4}$ at the point $\mathbf{a}=(1,0,1)$.
4. [12] Give an example function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ which has a saddle point at $\mathbf{a}=(1,1)$.
5. [15] Use Lagrange multipliers to identify the critical points of the function $f(x, y)=$ $5 x+2 y$ subject to the constraint $5 x^{2}+2 y^{2}=14$.
6. [12] Evaluate the double integral $\int_{0}^{2} \int_{0}^{x^{2}}(x-y) d y d x$.
7. [12] Set up a double integral to compute the volume of a solid whose base is the plane region D bounded by $x=2, x=5$, and $x+y=2$, and $y=x^{2}$; and whose height at a point (x, y) in that region is given by $f(x, y)=y e^{x}$. Do not evaluate the integral.

$\# 1 .[20]$	
$\# 2 .[15]$	
$\# 3 .[15]$	
$\# 4 .[12]$	
$\# 5 .[15]$	
$\# 6 .[12]$	
$\# 7 .[12]$	
Total	

