Math 131 Multivariate Calculus

Second Test Answers
April 2010

Scale. $90-100$ A, $77-89$ B, $61-76$ C. Median 89.

1. $\left[20 ; 10\right.$ points each part] Consider the path in \mathbf{R}^{2} given by $\mathbf{x}(t)=\left(t^{2}, \frac{2}{3}(2 t+1)^{3 / 2}\right)$ for $0 \leq t \leq 4$.
a. Write down an integral which gives the length of that path.

In general, the length is $\int_{a}^{b}\left\|\mathrm{x}^{\prime}(t)\right\| d t$ where

$$
\left\|\mathbf{x}^{\prime}(t)\right\|=\sqrt{\left(\frac{\partial x}{\partial t}\right)^{2}+\left(\frac{\partial y}{\partial t}\right)^{2}}
$$

For this function $\frac{\partial x}{\partial t}=2 t$ while $\frac{\partial y}{\partial t}=2(2 t+1)^{1 / 2}$. Therefore, the length is given by the integral

$$
\int_{0}^{4} \sqrt{4 t^{2}+4(2 t+1)} d t=\int_{0}^{4} 2(t+1) d t
$$

b. Evaluate that integral.

$$
\text { It's } t^{2}+\left.2 t\right|_{0} ^{4}=24
$$

2. [15] Show that the vector field

$$
\mathbf{F}(x, y, z)=\left(10 x+2 x z^{2}, 28 y^{3}, 2 x^{2} z\right)
$$

is irrotational.
A vector field is irrotational if its curl is $\mathbf{0}$. The curl of this vector field is

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\nabla \times \mathbf{F} \\
& =\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \times\left(F_{1}, F_{2}, F_{3}\right) \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \\
& =(0-0,4 x z-4 x z, 0-0)=\mathbf{0}
\end{aligned}
$$

3. [15] Calculate the Hessian matrix $\operatorname{Hf}(\mathbf{a})$ for the scalar field $f(x, y, z)=x^{3}+x^{2} y-y z^{2}+2 z^{4}$ at the point $\mathbf{a}=(1,0,1)$.

The first and second derivatives of f are

$$
\begin{gathered}
f_{x}=3 x^{2}+2 x y, f_{y}=x^{2}-z^{2}, f_{z}=-2 y z+8 z^{3} \\
f_{x x}=6 x, f_{x y}=2 x, f_{x z}=0, f_{y y}=0 \\
f_{y z}=-2 z, f_{z z}=-2 y z+24 z^{2}
\end{gathered}
$$

So the Hessian is

$$
\begin{aligned}
H f(\mathbf{a}) & =\left[\begin{array}{lll}
f_{x x} & f_{x y} & f_{x z} \\
f_{y x} & f_{y y} & f_{y z} \\
f_{z x} & f_{z y} & f_{z z}
\end{array}\right](\mathbf{a}) \\
& =\left[\begin{array}{ccc}
6 & 2 & 0 \\
2 & 0 & -2 \\
0 & -2 & 24
\end{array}\right]
\end{aligned}
$$

4. [12] Give an example function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ which has a saddle point at $\mathbf{a}=(1,1)$.

Recall that a critical point is a saddle point it's neither a max nor a min, but nearby the function takes both larger and smaller values than at the critical point.

We looked at the function $f(x, y)=x^{2}-y^{2}$ as a paradigm for saddle points. Its saddle point was at $(0,0)$. Probably this simplest such function with a saddle point at $(1,1)$ can by translating that function to get $f(x, y)=(x-1)^{2}-(y-$ $1)^{2}$.
5. [15] Use Lagrange multipliers to identify the critical points of the function $f(x, y)=5 x+2 y$ subject to the constraint $5 x^{2}+2 y^{2}=14$.

Besides the constraint, the other two equations come from $\nabla f=\lambda \nabla g$ where $g(x, y)=5 x^{2}+2 y^{2}$. Here, $\nabla f(x, y)=$ $(5,2)$ and $\nabla g(x, y)=(10 x, 4 y)$, so those are the equations

$$
\begin{aligned}
& 5=\lambda 10 x \\
& 2=\lambda 4 y
\end{aligned}
$$

Thus $\lambda=\frac{1}{2} x=\frac{1}{2} y$. Hence, $x=y$. Along with the constraint $5 x^{2}+2 y^{2}=14$, that determines the two critical points, $(\sqrt{2}, \sqrt{2})$ and $(-\sqrt{2},-\sqrt{2})$.
6. [12] Evaluate the double integral $\int_{0}^{2} \int_{0}^{x^{2}}(x-y) d y d x$.

$$
\begin{aligned}
& =\left.\int_{0}^{2}\left(x y-\frac{1}{2} y^{2}\right)\right|_{0} ^{x^{2}} d x \\
& =\int_{0}^{2}\left(x^{3}-\frac{1}{2} x^{4}\right) d x \\
& =\frac{1}{4} x^{4}-\left.\frac{1}{10} x^{5}\right|_{0} ^{2}=\frac{16}{4}-\frac{32}{10}=\frac{4}{5}
\end{aligned}
$$

7. [12] Set up a double integral to compute the volume of a solid whose base is the plane region D bounded by $x=2$, $x=5$, and $x+y=2$, and $y=x^{2}$; and whose height at a point (x, y) in that region is given by $f(x, y)=y e^{x}$. Do not evaluate the integral.

When $2 \leq x \leq 5, x^{2}>2-y$, so the double integral is

$$
\int_{2}^{5} \int_{2-x}^{x^{2}} y e^{x} d y d x
$$

