CLARK
 UNIVERSITY

Math 131 Multivariate Calculus
Second Test Answers
April 2014

Scale. 88-100 A, 73-87 B, 53-72 C. Median 77.

Problem 1. [30; 6 points each part] Calculate the velocity, speed, acceleration, and unit tangent vector of the path $\mathbf{x}(t)=\left(\cos t, \sin t, e^{t}\right)$.
a. Velocity. $\mathbf{x}^{\prime}(t)=\left(-\sin t, \cos t, e^{t}\right)$.
b. Speed.

$$
\begin{aligned}
\left\|\mathbf{x}^{\prime}(t)\right\| & =\left\|\left(-\sin t, \cos t, e^{t}\right)\right\| \\
& =\sqrt{\sin ^{2} t+\cos ^{2} t+e^{2 t}}=\sqrt{1+e^{2 t}}
\end{aligned}
$$

c. Acceleration. $\mathbf{x}^{\prime \prime}(t)=\left(-\cos t,-\sin t, e^{t}\right)$.
d. Unit tangent vector.

That's the velocity divided by the speed.
$T(t)=\frac{\mathbf{x}^{\prime}(t)}{\left\|\mathbf{x}^{\prime}(t)\right\|}=\left(\frac{-\sin t}{\sqrt{1+e^{2 t}}}, \frac{\cos t}{\sqrt{1+e^{2 t}}}, \frac{e^{t}}{\sqrt{1+e^{2 t}}}\right)$
e. Set up an integral that gives the length of that path for $1 \leq t \leq 5$. Do not evaluate the integral.

That's the integral of the speed.

$$
\int_{1}^{5} \sqrt{1+e^{2 t}} d t
$$

Problem 2. [15] The vector field $\mathbf{F}(x, y, z)=$ $(y, x,-3)$ is the gradient field ∇f of some potential field f. Find a potential function $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ for \mathbf{F}.

We're looking for a function f such that $\nabla f=\mathbf{F}$. So we need $f_{x}=y, f_{y}=x$, and $f_{z}=-3$. Well, a function whose partial derivative with respect to x equals y is $x y+C$ where C doesn't depend on x. But the partial derivative of $x y+C$ with respect to y should be x, therefore C doesn't depend on y either.

Finally, we need the partial derivative of $x y+C$ with respect to z to be -3 , so $C=-3 z$ works. Thus, a potential function for \mathbf{F} is $f(x, y, z)=x y-$ $3 z$. (All the rest of the potential functions for \mathbf{F} differ from this one by a constant.)

Problem 3. [15] Set up a double integral to compute the volume of a solid whose base is the plane region D in the (x, y)-plane bounded by the x axis and the parabola $y=4-x^{2}$; and whose height at a point (x, y) in that region is given by $f(x, y)=\sin \left(x^{2}+y^{2}\right)$. Be sure to sketch the region D. Do not evaluate the integral.

The parabola $y=4-x^{2}$ opens downward and interects the x-axis at $x=2$ and $x=-2$. It also intesects the y-axis at $y=4$. So, the region D between that parabola and the x-axis is bounded between the vertical lines $x=-2$ and $x=2$. Thus, a double integral for the volume is

$$
\int_{x=-2}^{2} \int_{y=0}^{4-x^{2}} \sin \left(x^{2}+y^{2}\right) d y d x
$$

Alternatively, you could slice D by horizontal lines to get a different integral. You'll need to solve $y=$ $4-x^{2}$ for x to get $x= \pm \sqrt{4-y}$.

$$
\int_{y=0}^{4} \int_{x=-\sqrt{4-y}}^{\sqrt{4-y}} \sin \left(x^{2}+y^{2}\right) d x d y
$$

Problem 4. [20] Consider the function $f(x, y)=$ $e^{-y}\left(x^{2}-y^{2}\right)$. Its first and second partial derivatives are

$$
f_{x}=2 x e^{-y} \quad f_{y}=-e^{-y}\left(x^{2}+2 y-y^{2}\right)
$$

$f_{x x}=2 e^{-y} \quad f_{x y}=-2 x e^{-y} \quad f_{y y}=e^{-y}\left(x^{2}+4 y-y^{2}-2\right)$
a. Determine the two critical points of f.

To find the critical points set the two first partial derivatives to 0 and solve the system of two equations simultaneously. From the equation $f_{x}=$ $2 x e^{-y}=0$, it follows that $x=0$. From the equation $f_{y}=-e^{-y}\left(x^{2}+2 y-y^{2}\right)=0$ it follows that
$2 y-y^{2}=0$, so $y=0,2$. Thus, the two critical points are

$$
(x, y)=(0,0),(0,2) .
$$

b. Identify the nature (max, min, saddle) of each critical point.

First, write down the general Hessian

$$
\begin{aligned}
H f & =\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 e^{-y} & -2 x e^{-y} \\
-2 x e^{-y} & e^{-y}\left(x^{2}+4 y-y^{2}-2\right)
\end{array}\right]
\end{aligned}
$$

Now consider the first critical point $(x, y)=$ $(0,0)$.

$$
H f(0,0)=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]
$$

The first principal minor is upper left entry of that matrix, $d_{1}=2$, while the second is the determinant of that matrix, $d_{2}=-4$. Since d_{1} is positive but d_{2} is negative, this critical point is a saddle point.

Next consider the second critical point $(x, y)=$ $(0,2)$.

$$
H f(0,2)=\left[\begin{array}{cc}
2 e^{-2} & 0 \\
0 & 2 e^{-2}
\end{array}\right]
$$

Therefore, $d_{1}=2 e^{-2}$ is positive, and $d_{2}=4 e^{-4}$ is also positive. Since both principle minors are positive, this critical point is a minimum.

Problem 5. [20] On change of variables and the Jacobian.

Parabolic coordinates. The relevant equations to convert between rectangular coordinates (x, y) and parabolic coordinates (u, v) are

$$
\begin{array}{rlrl}
x=u v & u & =\sqrt{\sqrt{x^{2}+y^{2}}+y} \\
y=\frac{1}{2}\left(u^{2}-v^{2}\right) & v & =\sqrt{\sqrt{x^{2}+y^{2}}-y}
\end{array}
$$

A double integral can be converted from rectangular coordinates to parabolic coordinates using a Jacobian. The area differential $d A=d x d y$ is equal to $\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v$.

Determine the Jacobian $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$.
The Jacobian is

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\left|\begin{array}{ll}
\partial x / \partial u & \partial y / \partial u \\
\partial x / \partial v & \partial y / \partial v
\end{array}\right| \\
& =\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} \\
-\frac{\partial y}{\partial u} \frac{\partial x}{\partial v} & \\
& =-v^{2}-u^{2}
\end{aligned}
$$

If you worked it out in terms of x and y, your answer would be $-2 \sqrt{x^{2}+y^{2}}$.

Extra credit. Write a short paper (about one typed page) on elliptic coordinates. Include the following topics.

- What they are and give an example
- Who invented them
- The equations to convert between rectangular and elliptic coordinates
- Evaluate the Jacobian
- Use that to determine the area of some figure (maybe the example you have at the beginning) by a change of variables.

Turn in your paper on Monday.

