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We’ll continue the stages to a complete gener-
alization of the chain rule that we started in part
1.

The second step where t becomes a vector t.
In general, we’ll want t to be a vector (t1, t2, . . . , tn),
but, for purposes of illustration, let’s make n = 2,
and write t = (s, t). And, while we’re at it, let’s
have m = 2 so that x = (x, y) where x and y are
each functions of both s and t. Then f◦x : R2 → R
is defined by

(f ◦ x)(t) = f(x(s, t), y(s, t)).

We want to find D(f ◦ x) which comprises the two

partial derivatives
∂f

∂s
and

∂f

∂t
.

But these partials are each derivatives explained
in the previous paragraphs. After all, a partial
derivative is just an ordinary derivative when the
other variables are left constant. So, we have

∂f

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

and
∂f

∂t
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

When this is written out in matrix notation, we
get the same matrix equation for the chain rule,
namely,

D(f ◦ x) = Df Dx,

the only difference is, this time the two matrices
being multiplied together don’t have one row and
one column, but two, and in general they’ll have n.

Example 1. We need an example to illustrate
what’s going on. Let f(x, y) =

√
x2 + y2, let

x(s, t) = s ln t, and let y(s, t) = sinx+ cos t. Then

f(x(s, t), y(s, t)) =
√

(s ln t)2 + (sin s+ cos t)2.

Therefore,

df

ds
=

∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s

=
x√

x2 + y2
ln t+

y√
x2 + y2

cos s

df

dt
=

∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t

=
x√

x2 + y2

(s
t

)
+

y√
x2 + y2

(− sin t)

The derivative of a composition is the prod-
uct of matrices. We’re up to the last step of gen-
eralizing the chain rule where f becomes a vector-
valued function.

There really isn’t much more to do when f =
(f1, f2, . . . , fp). That’s because the derivative Df
of the vector-valued function f is just a matrix
whose rows are the derivatives Dfj of the compo-
nent functions fj for j = 1, 2, . . . , p. Since each
D(fj ◦x) = DfjDx, placing them in rows gives the
matrix product

D(f ◦ x) = Df Dx

Note that f is a function Rm → Rp while its deriva-
tive Df is a p × m matrix; also x is a function
Rn → Rm while its derivative Dx is an m× n ma-
trix; so the composition f ◦x is a function Rn → Rp

and its derivative D(f ◦ x) is a p× n matrix.

Polar/rectangular conversions. We now know
that the chain rule is, in general, a product of ma-
trices

D(f ◦ x) = Df Dx.

As an important application of this general chain
rule, we’ll develop the derivatives associated to po-
lar/rectangular conversions.
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Suppose f : R2 → R is a scalar-valued func-
tion defined on the plane. Let’s use the nota-
tion w = f(x, y). Then we have the two par-

tial derivatives
∂w

∂x
and

∂w

∂y
as usual. But some-

times we want to use polar coordinates and find
the partials with respect to r and θ. Of course,
we could figure them out directly since we know
how to express f in terms of r and θ, since w =
f(x, y) = f(x(r, θ), y(r, θ)) where x(r, θ) = r cos θ
and y(r, θ) = r sin θ. Here the question is: can we

figure out what
∂w

∂r
and

∂w

∂θ
are directly from

∂w

∂x

and
∂w

∂y
?

We can treat the vector x = (x, y) as a function
R2 → R2 as

x(r, θ) = (x(r, θ), y(r, θ)) = (r cos θ, r sin θ).

Then we can apply the general chain rule D(f◦x) =
Df Dx. We’ll get the matrix equation[

∂w

∂r

∂w

∂θ

]
=

[
∂w

∂x

∂w

∂y

]∂x∂r ∂x

∂θ
∂y

∂r

∂y

∂θ


=

[
∂w

∂x

∂w

∂y

] [
cos θ −r sin θ
sin θ r cos θ

]
This result is usally summarized in terms of dif-

ferential operators where the name of the function
being differentiated is omitted.

∂

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
∂

∂θ
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y

Conversely, you can find the partials with respect
to x and y in terms of those for r and θ.

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
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