CNARERSITY

The unit tangent vector and curvature
Math 131 Multivariate Calculus
D Joyce, Spring 2014
Summary of the arclength pararamter s. The length of a path $\mathbf{x}:[a, b] \rightarrow \mathbf{R}^{n}$, also called its arclength, is the integral of its speed

$$
\int_{a}^{b}\left\|\mathbf{x}^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{\left(\frac{d x_{1}}{d t}\right)^{2}+\cdots+\left(\frac{d x_{n}}{d t}\right)^{2}} d t
$$

Denote the length of the path up to t as $s(t)$, that is,

$$
s(t)=\int_{a}^{t}\left\|\mathbf{x}^{\prime}\right\|=\int_{a}^{t}\left\|\mathbf{x}^{\prime}(\tau)\right\| d \tau .
$$

Then by the fundamental theorem of calculus,

$$
\frac{d s}{d t}=\left\|\mathbf{x}^{\prime}(t)\right\|=\sqrt{\left(\frac{d x_{1}}{d t}\right)^{2}+\cdots+\left(\frac{d x_{n}}{d t}\right)^{2}},
$$

which says that the derivative of the arclength s is the speed. In other words, $d s$ is the differential of the arclength s. The last equation can be written in a differential form as

$$
d s=\sqrt{d x_{1}^{2}+\cdots+d x_{n}^{2}} .
$$

The unit tangent vector and arclength. The velocity vector, $\mathbf{v}(t)=\mathbf{x}^{\prime}(t)$, for a path \mathbf{x}, points in a direction tangent to the path at the point $\mathbf{x}(t)$. We can normalize it to make it a unit tangent vector T just by dividing it by its length:

$$
\mathbf{T}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{\mathrm{x}^{\prime}}{\left\|\mathbf{x}^{\prime}\right\|}
$$

Of course, this is only defined when $\mathbf{x}^{\prime}(t)$ is not $\mathbf{0}$. Note that T could also be defined as

$$
\mathbf{T}=\frac{\mathbf{d x}}{d s}
$$

since we saw earlier that $\frac{d \mathbf{x}}{d s}$ was equal to $\frac{\mathbf{x}^{\prime}}{\left\|\mathbf{x}^{\prime}\right\|}$.
The unit tangent vector \mathbf{T} gives the direction of the curve. It's useful because it says which way the path is going, but doesn't indicate how fast the object is travelling that path. Thus, \mathbf{T} is an intrinsic property of the underlying curve.

We can use \mathbf{T} to study how the curve bends, since the bend of the curve has to do with the change in the direction of the curve. Since \mathbf{T} is a unit vector, we can identify it with an angle between 0 and 2π. The rate of change of \mathbf{T}, therefore, has to do with the rate of change of this angle, in fact, it is the derivative of that angle.
Theorem 1. Let x be a path with nonzero speed. Then

1. $\frac{d \mathbf{T}}{d t}$ is orthogonal to \mathbf{T}.
2. $\left\|\frac{d \mathbf{T}}{d t}\right\|$ is the angular rate of change of the direction of \mathbf{T}, in other words $\|d \mathbf{T}\|=|d \theta|$, where $d \theta$ is the differential angle associated to the differential $d \mathbf{T}$.

We saw part 1 recently when we showed it was true for any unit vector $\mathbf{u}: \mathbf{R} \rightarrow \mathbf{R}^{2}$, but it's just as true when $n>2$. The other statement is also true of any unit vector \mathbf{u}, and it depends on the differential angle $d \theta$ being equal to the $d \mathbf{u}$, a vector tangent to the unit circle (or unit sphere). A diagram helps here.
The curvature, or bend, of a curve is suppose to be the rate of change of the direction of the curve, so that's how we define it.
Definition 2 (curvature). Let x be a path with unit tangent vector $\mathbf{T}=\frac{\mathbf{x}^{\prime}}{\left\|\mathbf{x}^{\prime}\right\|}$. The curvature κ at t is the angular rate of change of \mathbf{T} per unit change in the distance along the path. That is,

$$
\kappa(t)=\left\|\frac{d \mathbf{T}}{d s}\right\| .
$$

By the chain rule, this can also be written

$$
\kappa=\frac{\|d \mathbf{T} / d t\|}{|d s / d t|}
$$

Figure 1: Conic helix

Curves that are nearly straight have nearly 0 curvature, while those that curl up tightly have high curvature.

Figure 1 shows a conic helix. Its equation in cylindrical coordinates is $(r, \theta, z)=(t, t, t)$, and in rectangular coordinates $(x, y, z)=(t \cos t, t \sin t, t)$. Near the apex of the cone, $(0,0,0)$, it's curved tight with a high curvature, but as it moves away from that radius of the spiral gets larger and the curvature decreases.

It's easy to show that a circle of radius r has curvature $\kappa=1 / r$. In fact, an alternate definition for curvature is that it is the reciprocal of the radius of the circle that best fits the curve at the point in question.

Example 3 (The helix again). From the symmetry of a helix, you can expect the curvature to be the same at every point. First let's compute the unit tangent vector \mathbf{T} for the helix.

Since

$$
\mathbf{x}(s)=\left(a \cos \frac{s}{\sqrt{a^{2}+b^{2}}}, a \sin \frac{s}{\sqrt{a^{2}+b^{2}}}, \frac{b s}{\sqrt{a^{2}+b^{2}}}\right)
$$

therefore

$$
\begin{aligned}
T(s)= & \frac{d \mathbf{x}}{d s} \\
= & \left(\frac{-a}{\sqrt{a^{2}+b^{2}}} \sin \frac{s}{\sqrt{a^{2}+b^{2}}},\right. \\
& \left.\frac{a}{\sqrt{a^{2}+b^{2}}} \cos \frac{s}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}\right)
\end{aligned}
$$

Now differentiate this direction \mathbf{T} with respect to s to get

$$
\frac{d T}{d s}=\left(\frac{-a}{a^{2}+b^{2}} \cos \frac{s}{\sqrt{a^{2}+b^{2}}}, \frac{-a}{a^{2}+b^{2}} \sin \frac{s}{\sqrt{a^{2}+b^{2}}}, 0\right)
$$

Then, leaving out the algebra, the curvature is

$$
\kappa=\left\|\frac{d T}{d s}\right\|=\frac{a}{a^{2}+b^{2}}
$$

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/

