

The unit tangent vector and curvature Math 131 Multivariate Calculus D Joyce, Spring 2014

Summary of the arclength parameter s. The length of a path $\mathbf{x} : [a, b] \to \mathbf{R}^n$, also called its arclength, is the integral of its speed

$$\int_{a}^{b} \|\mathbf{x}'(t)\| dt = \int_{a}^{b} \sqrt{\left(\frac{dx_1}{dt}\right)^2 + \dots + \left(\frac{dx_n}{dt}\right)^2} dt.$$

Denote the length of the path up to t as s(t), that is,

$$s(t) = \int_{a}^{t} \|\mathbf{x}'\| = \int_{a}^{t} \|\mathbf{x}'(\tau)\| \, d\tau.$$

Then by the fundamental theorem of calculus,

$$\frac{ds}{dt} = \|\mathbf{x}'(t)\| = \sqrt{\left(\frac{dx_1}{dt}\right)^2 + \dots + \left(\frac{dx_n}{dt}\right)^2},$$

which says that the derivative of the arclength s is the speed. In other words, ds is the differential of the arclength s. The last equation can be written in a differential form as

$$ds = \sqrt{dx_1^2 + \dots + dx_n^2}$$

The unit tangent vector and arclength. The velocity vector, $\mathbf{v}(t) = \mathbf{x}'(t)$, for a path \mathbf{x} , points in a direction tangent to the path at the point $\mathbf{x}(t)$. We can normalize it to make it a unit tangent vector \mathbf{T} just by dividing it by its length:

$$\mathbf{T} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{\mathbf{x}'}{\|\mathbf{x}'\|}.$$

Of course, this is only defined when $\mathbf{x}'(t)$ is not **0**. Note that T could also be defined as

$$\mathbf{T} = \frac{\mathbf{d}\mathbf{x}}{ds}$$

since we saw earlier that $\frac{d\mathbf{x}}{ds}$ was equal to $\frac{\mathbf{x}'}{\|\mathbf{x}'\|}$. The unit tangent vector \mathbf{T} gives the direction of

The unit tangent vector \mathbf{T} gives the direction of the curve. It's useful because it says which way the path is going, but doesn't indicate how fast the object is travelling that path. Thus, \mathbf{T} is an intrinsic property of the underlying curve.

We can use \mathbf{T} to study how the curve bends, since the bend of the curve has to do with the change in the direction of the curve. Since \mathbf{T} is a unit vector, we can identify it with an angle between 0 and 2π . The rate of change of \mathbf{T} , therefore, has to do with the rate of change of this angle, in fact, it is the derivative of that angle.

Theorem 1. Let \mathbf{x} be a path with nonzero speed. Then

1.
$$\frac{d\mathbf{T}}{dt}$$
 is orthogonal to **T**.

2. $\|\frac{d\mathbf{I}}{dt}\|$ is the angular rate of change of the direction of \mathbf{T} , in other words $\|d\mathbf{T}\| = |d\theta|$, where $d\theta$ is the differential angle associated to the differential $d\mathbf{T}$.

We saw part 1 recently when we showed it was true for any unit vector $\mathbf{u} : \mathbf{R} \to \mathbf{R}^2$, but it's just as true when n > 2. The other statement is also true of any unit vector \mathbf{u} , and it depends on the differential angle $d\theta$ being equal to the $d\mathbf{u}$, a vector tangent to the unit circle (or unit sphere). A diagram helps here.

The curvature, or bend, of a curve is suppose to be the rate of change of the direction of the curve, so that's how we define it.

Definition 2 (curvature). Let **x** be a path with unit tangent vector $\mathbf{T} = \frac{\mathbf{x}'}{\|\mathbf{x}'\|}$. The *curvature* κ at *t* is the angular rate of change of **T** per unit change in the distance along the path. That is,

$$\kappa(t) = \left\| \frac{d\mathbf{T}}{ds} \right\|.$$

By the chain rule, this can also be written

$$\kappa = \frac{\|d\mathbf{T}/dt\|}{|ds/dt|}$$

therefore

$$T(s) = \frac{d\mathbf{x}}{ds}$$
$$= \left(\frac{-a}{\sqrt{a^2 + b^2}} \sin \frac{s}{\sqrt{a^2 + b^2}}, \frac{a}{\sqrt{a^2 + b^2}} \cos \frac{s}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}}\right)$$

Now differentiate this direction ${\bf T}$ with respect to s to get

$$\frac{dT}{ds} = \left(\frac{-a}{a^2 + b^2} \cos \frac{s}{\sqrt{a^2 + b^2}}, \frac{-a}{a^2 + b^2} \sin \frac{s}{\sqrt{a^2 + b^2}}, 0\right)$$

Then, leaving out the algebra, the curvature is

$$\kappa = \left\| \frac{dT}{ds} \right\| = \frac{a}{a^2 + b^2}.$$

Curves that are nearly straight have nearly 0 curvature, while those that curl up tightly have high curvature.

Figure 1: Conic helix

Figure 1 shows a conic helix. Its equation in cylindrical coordinates is $(r, \theta, z) = (t, t, t)$, and in rectangular coordinates $(x, y, z) = (t \cos t, t \sin t, t)$. Near the apex of the cone, (0, 0, 0), it's curved tight with a high curvature, but as it moves away from that radius of the spiral gets larger and the curvature decreases.

It's easy to show that a circle of radius r has curvature $\kappa = 1/r$. In fact, an alternate definition for curvature is that it is the reciprocal of the radius of the circle that best fits the curve at the point in question.

Example 3 (The helix again). From the symmetry of a helix, you can expect the curvature to be the same at every point. First let's compute the unit tangent vector \mathbf{T} for the helix.

Since

$$\mathbf{x}(s) = \left(a\cos\frac{s}{\sqrt{a^2+b^2}}, a\sin\frac{s}{\sqrt{a^2+b^2}}, \frac{bs}{\sqrt{a^2+b^2}}\right),$$

Math 131 Home Page at

http://math.clarku.edu/~djoyce/ma131/