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The del operator ∇. First, we’ll start by ab-
stracting the gradient ∇ to an operator. By the
way, the gradient of f isn’t always denoted ∇f ;
sometimes it’s denoted grad f .

As you know the gradient of a scalar field f :
Rn → R is

∇f =

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

)
.

We can abstract this by leaving out the f to get an
operator

∇ =

(
∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

)
which, when applied to f yields ∇f . This ∇ is
called the del operator.

We can treat this del operator like a vector itself.
We can combine it with other vector operations like
dot product and cross product, and that leads to
the concepts of divergence and curl, respectively.

Definition 1. We define the divergence of a vector
field F : Rn → Rn as

div F = ∇ · F =
∂F1

∂x1

+
∂F2

∂x2

+ · · ·+ ∂Fn

∂xn

.

We’ll look at a couple of examples in class. As we
do so, we’ll develop the idea that div F(x) somehow
measures the rate of flow out of the point x, at least
when F measures the velocity of a fluid. When a
vector field F has 0 divergence, i.e., div F is con-
stantly 0, we say F is incompressible or solenoidal.

Definition 2. We define the curl of a vector field
in space, F : R3 → R3, as

curl F = ∇× F

=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
× (F1, F2, F3)

=

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
We’ll look at a couple of examples of curl in class,

too. It’s harder to get a good intuition for curl, but
it does say something about how much and which
way a vector field swirls, or rotates. A vector field
whose curl is constantly 0 is called irrotational.

You can take curls of plane vector fields F : R2 →
R2, too. Just assume that the first two coordinate
functions F1 and F2 don’t depend on z and the
third coordinate function F3 is 0. Then the first
two coordinates of curl F are 0 leaving only the
third coordinate

∂F2

∂x
− ∂F1

∂y

as the curl of a plane vector field.

A couple of theorems about curl, gradient,
and divergence. The gradient, curl, and diver-
gence have certain special composition properties,
specifically, the curl of a gradient is 0, and the di-
vergence of a curl is 0.

The first says that the curl of a gradient field
is 0. If f : R3 → R is a scalar field, then its
gradient, ∇f , is a vector field, in fact, what we
called a gradient field, so it has a curl. The first
theorem says this curl is 0. In other words, gradient
fields are irrotational.

Theorem 3. If a scalar field f : R3 → R has
continuous second partial derivatives, then

curl (grad f) = ∇× (∇f) = 0

1



Proof. Since

∇× F =

(
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
and

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

therefore ∇× (∇f) equals(
∂

∂y

∂f

∂z
− ∂

∂z

∂f

∂y
,
∂

∂z

∂f

∂x
− ∂

∂x

∂f

∂z
,
∂

∂x

∂f

∂y
− ∂

∂y

∂f

∂x

)
.

Since f has continuous second partials, the order
that the partials are taken doesn’t matter, so the
last expression simplifies to (0, 0, 0). q.e.d.

Theorem 4. If a vector field F : R3 → R3 has con-
tinuous second partial derivatives of its coordinate
functions, then

div (curl F) = ∇ · (∇× F) = 0.

Proof. First, note that ∇ · (∇× F) equals

∂
∂x

(∂F3

∂y
− ∂F2

∂z
) + ∂

∂y
(∂F1

∂z
− ∂F3

∂x
) + ∂

∂z
(∂F2

∂x
− ∂F1

∂y
).

Since order the partials are taken doesn’t matter,
the expression simplifies to 0. q.e.d.

Some of the other properties of div and curl are
mentioned in the exercises for the section. First of
all, they’re both linear. If k is a scalar, and F and
G are vector fields, then

div (kF) = k div F

div (F±G) = div F± div G

curl (kF) = k curl F

curl (F±G) = curl F± curl G

Some version of the product rule also works for
them. Here f is a scalar field, and F and G are
vector fields.

div (fG) = f div G + (grad f) ·G
curl (fG) = f curl G + (grad f)×G

div (F×G) = G · curl F− F · curl G
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