

Directional derivatives, steepest ascent, tangent planes Math 131 Multivariate Calculus D Joyce, Spring 2014

Directional derivatives. Consider a scalar field $f: \mathbf{R}^n \to \mathbf{R}$ on R^n . So far we have only considered the partial derivatives in the directions of the axes. For instance $\frac{\partial f}{\partial x}$ gives the rate of change along a line parallel to the x-axis. What if we want the rate of change in a direction which is not parallel to an axis?

First, we can identify directions as unit vectors, those vectors whose lengths equal 1. Let \mathbf{u} be such a unit vector, $\|\mathbf{u}\| = 1$. Then we define the *directional derivative* of f in the direction \mathbf{u} as being the limit

$$D_{\mathbf{u}}f(\mathbf{a}) = \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{u}) - f(\mathbf{a})}{h}.$$

This is the rate of change as $\mathbf{x} \to \mathbf{a}$ in the direction \mathbf{u} . When \mathbf{u} is the standard unit vector \mathbf{e}_i , then, as expected, this directional derivative is the i^{th} partial derivative, that is, $D_{\mathbf{e}_i} f(\mathbf{a}) = f_{x_i}(\mathbf{a})$.

These directional derivatives are linear combinations of the partial derivatives, at least when f is differentiable. Note that the direction $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ is a linear combination of the standard unit vectors:

$$\mathbf{u} = u_1 \mathbf{e}_1 + u_2 \mathbf{e}_2 + \dots + u_n \mathbf{e}_n.$$

And, when f is differentiable, it is well-approximated by the linear function g that describes the tangent plane, that is, by $g(\mathbf{x}) =$

$$f(\mathbf{a}) + f_{x_1}(\mathbf{a})(x_1 - a_1) + \dots + f_{x_n}(\mathbf{a})(x_n - a_n).$$

Therefore,

$$D_{\mathbf{u}}f(\mathbf{a})$$

$$= \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{u}) - f(\mathbf{a})}{h}$$

$$= \lim_{h \to 0} \frac{g(\mathbf{a} + h\mathbf{u}) - f(\mathbf{a})}{h}$$

$$= \lim_{h \to 0} \frac{f_{x_1}(\mathbf{a})hu_1 + f_{x_2}(\mathbf{a})hu_2 + \dots + f_{x_n}(\mathbf{a})hu_n}{h}$$

$$= f_{x_1}(\mathbf{a})u_1 + f_{x_2}(\mathbf{a})u_2 + \dots + f_{x_n}(\mathbf{a})u_n$$

In other notation, the directional derivative is the dot product of the gradient and the direction

$$D_{\mathbf{u}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{u}$$

We can interpret this as saying that the gradient, $\nabla f(\mathbf{a})$, has enough information to find the derivative in any direction.

Steepest ascent. The gradient $\nabla f(\mathbf{a})$ is a vector in a certain direction. Let \mathbf{u} be any direction, that is, any unit vector, and let θ be the angle between the vectors $\nabla f(\mathbf{a})$ and \mathbf{u} . Now, we may conclude that the directional derivative

$$D_{\mathbf{u}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{u} = ||\nabla f(\mathbf{a})|| \cos \theta$$

since, in general, the dot product of two vectors ${\bf b}$ and ${\bf c}$ is

$$\mathbf{b} \cdot \mathbf{c} = \|\mathbf{b}\| \|\mathbf{c}\| \cos \theta$$

but in our case, \mathbf{u} is a unit vector. But $\cos \theta$ is between -1 and 1, so the largest the directional derivative $D_{\mathbf{u}}f(\mathbf{a})$ can be is when θ is 0, that is when \mathbf{u} is the direction of the gradient $\nabla f(\mathbf{a})$.

In other words, the gradient $\nabla f(\mathbf{a})$ points in the direction of the greatest increase of f, that is, the direction of steepest ascent. Of course, the opposite direction, $-\nabla f(\mathbf{a})$, is the direction of steepest descent.

Example 1. Find the curves of steepest descent for the ellipsoid

$$4x^2 + y^2 + 4z^2 = 16$$
 for $z > 0$.

If we can describe the projections of the curves in the (x, y)-plane, that's enough. This ellipsoid is the graph of a function $f : \mathbf{R}^2 \to \mathbf{R}$ given by

$$f(x,y) = \frac{1}{2}\sqrt{16 - 4x^2 - y^2}.$$

The gradient of this function is

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$
$$= \left(\frac{-2x}{\sqrt{16 - 4x^2 - y^2}}, \frac{-y}{2\sqrt{16 - 4x^2 - y^2}}\right)$$

The curve of steepest descent will be in the opposite direction, $-\nabla f$.

So, we're looking for a path $\mathbf{x}(t) = (x(t), y(t))$ whose derivative is $-\nabla f$. In other words, we need two functions x(t) and y(t) such that

$$x'(t) = \frac{2x}{\sqrt{16 - 4x^2 - y^2}},$$

$$y'(t) = \frac{y}{2\sqrt{16 - 4x^2 - y^2}}.$$

Each is a differential equation with independent variable t. We can eliminate t from the discussion since

$$\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{y}{2x}.$$

A common method to solve differential equations is separation of variables, which we can use here. From the last equation, we get

$$\frac{dy}{y} = \frac{dx}{4x}$$

and, then integrating,

$$\int \frac{dy}{y} = \int \frac{dx}{4x},$$

SO

$$ln |y| = \frac{1}{4} ln |x| + C,$$

which gives us, writing A for e^C ,

$$|y| = A\sqrt{|x|}.$$

That describes the curves of steepest descent as a family of curves parameterized by the real constant A (different from the last constant A)

$$x = Ay^4.$$

Tangent planes. We can, of course, use gradients to find equations for planes tangent to surfaces. A typical surface in \mathbb{R}^3 is given by an equation

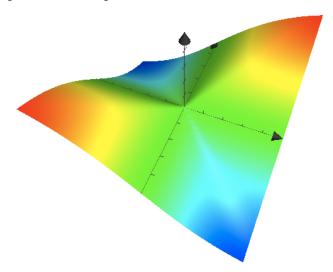
$$f(x, y, z) = c.$$

That is to say, a surface is a level set of a scalarvalued function $f: \mathbf{R}^3 \to \mathbf{R}$. More generally, a typical hypersurface in \mathbf{R}^{n+1} is a level set of a function $f: \mathbf{R}^n \to \mathbf{R}$.

Now, the gradient $\nabla f(\mathbf{a})$ of f points in the direction of the greatest change of f, and vectors orthogonal to $\nabla f(\mathbf{a})$ point in directions of 0 change of f, that is to say, they lie on the tangent plane. Another way of saying that is that $\nabla f(\mathbf{a})$ is a vector normal to the surface. If \mathbf{x} is any point in \mathbf{R}^3 , then

$$\nabla f(\mathbf{a}) \cdot (\mathbf{a} - \mathbf{x}) = 0$$

says that the vector $\mathbf{a} - \mathbf{x}$ is orthogonal to $\nabla f(\mathbf{a})$, and therefore lies in the tangent plane, and so \mathbf{x} is a point on that plane.



Example 2 (Continuous, nondifferentiable function). You're familiar with functions of one variable that not continuous everywhere. For example, f(x) = |x| is continuous, and it's differentiable everywhere except at x = 0. The left derivative is -1 there, but the right derivative is 1.

Things like that can happen for functions of more

than one variable. Consider the function

$$f(x) = \begin{cases} 0 & \text{if } x = y = 0\\ \frac{xy}{\sqrt{x^2 + y^2}} & \text{otherwise} \end{cases}$$

This function is continuous everywhere, but it's not differentiable at (x,y)=(0,0). The graph z=f(x,y) has no tangent plane there. There are directional derivatives in two directions, namely, along the x-axis the function is constantly 0, so the partial derivative $\frac{df}{dx}$ is 0; likewise along the y-axis, and $\frac{df}{dy}$ is 0.

But in all other directions, the directional derivative does not exist. For instance, along the line y = x the function is $f(x, x) = |x|/\sqrt{2}$, which has no derivative at x = 0.

Math 131 Home Page at http://math.clarku.edu/~djoyce/ma131/