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Directional derivatives. Consider a scalar field
f : Rn → R on Rn. So far we have only considered
the partial derivatives in the directions of the axes.

For instance
∂f

∂x
gives the rate of change along a

line parallel to the x-axis. What if we want the
rate of change in a direction which is not parallel
to an axis?

First, we can identify directions as unit vectors,
those vectors whose lengths equal 1. Let u be such
a unit vector, ‖u‖ = 1. Then we define the direc-
tional derivative of f in the direction u as being the
limit

Duf(a) = lim
h→0

f(a + hu)− f(a)

h
.

This is the rate of change as x→ a in the direction
u. When u is the standard unit vector ei, then,
as expected, this directional derivative is the ith

partial derivative, that is, Deif(a) = fxi
(a).

These directional derivatives are linear combi-
nations of the partial derivatives, at least when
f is differentiable. Note that the direction u =
(u1, u2, . . . , un) is a linear combination of the stan-
dard unit vectors:

u = u1e1 + u2e2 + · · ·+ unen.

And, when f is differentiable, it is well-
approximated by the linear function g that de-
scribes the tangent plane, that is, by g(x) =

f(a) + fx1(a)(x1 − a1) + · · ·+ fxn(a)(xn − an).

Therefore,

Duf(a)

= lim
h→0

f(a + hu)− f(a)

h

= lim
h→0

g(a + hu)− f(a)

h

= lim
h→0

fx1(a)hu1 + fx2(a)hu2 + · · ·+ fxn(a)hun
h

= fx1(a)u1 + fx2(a)u2 + · · ·+ fxn(a)un

In other notation, the directional derivative is the
dot product of the gradient and the direction

Duf(a) = ∇f(a) · u

We can interpret this as saying that the gradient,
∇f(a), has enough information to find the deriva-
tive in any direction.

Steepest ascent. The gradient ∇f(a) is a vector
in a certain direction. Let u be any direction, that
is, any unit vector, and let θ be the angle between
the vectors ∇f(a) and u. Now, we may conclude
that the directional derivative

Duf(a) = ∇f(a) · u = ‖∇f(a)‖ cos θ

since, in general, the dot product of two vectors b
and c is

b · c = ‖b‖ ‖c‖ cos θ

but in our case, u is a unit vector. But cos θ is
between −1 and 1, so the largest the directional
derivative Duf(a) can be is when θ is 0, that is
when u is the direction of the gradient ∇f(a).

In other words, the gradient ∇f(a) points in the
direction of the greatest increase of f , that is, the
direction of steepest ascent. Of course, the oppo-
site direction, −∇f(a), is the direction of steepest
descent.

Example 1. Find the curves of steepest descent
for the ellipsoid

4x2 + y2 + 4z2 = 16 for z ≥ 0.
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If we can describe the projections of the curves in
the (x, y)-plane, that’s enough. This ellipsoid is the
graph of a function f : R2 → R given by

f(x, y) = 1
2

√
16− 4x2 − y2.

The gradient of this function is

∇f =

(
∂f

∂x
,
∂f

∂y

)
=

(
−2x√

16− 4x2 − y2
,

−y
2
√

16− 4x2 − y2

)
The curve of steepest descent will be in the opposite
direction, −∇f .

So, we’re looking for a path x(t) = (x(t), y(t))
whose derivative is −∇f . In other words, we need
two functions x(t) and y(t) such that

x′(t) =
2x√

16− 4x2 − y2
,

y′(t) =
y

2
√

16− 4x2 − y2
.

Each is a differential equation with independent
variable t. We can eliminate t from the discussion
since

dy

dx
=
dy

dt

/dx
dt

=
y

2x
.

A common method to solve differential equations
is separation of variables, which we can use here.
From the last equation, we get

dy

y
=
dx

4x

and, then integrating,∫
dy

y
=

∫
dx

4x
,

so
ln |y| = 1

4
ln |x|+ C,

which gives us, writing A for eC ,

|y| = A
√
|x|.

That describes the curves of steepest descent as a
family of curves parameterized by the real constant
A (different from the last constant A)

x = Ay4.

Tangent planes. We can, of course, use gradi-
ents to find equations for planes tangent to surfaces.
A typical surface in R3 is given by an equation

f(x, y, z) = c.

That is to say, a surface is a level set of a scalar-
valued function f : R3 → R. More generally, a typ-
ical hypersurface in Rn+1 is a level set of a function
f : Rn → R.

Now, the gradient ∇f(a) of f points in the di-
rection of the greatest change of f , and vectors or-
thogonal to ∇f(a) point in directions of 0 change
of f , that is to say, they lie on the tangent plane.
Another way of saying that is that∇f(a) is a vector
normal to the surface. If x is any point in R3, then

∇f(a) · (a− x) = 0

says that the vector a − x is orthogonal to ∇f(a),
and therefore lies in the tangent plane, and so x is
a point on that plane.

Example 2 (Continuous, nondifferentiable func-
tion). You’re familiar with functions of one vari-
able that not continuous everywhere. For example,
f(x) = |x| is continuous, and it’s differentiable ev-
erywhere except at x = 0. The left derivative is −1
there, but the right derivative is 1.

Things like that can happen for functions of more
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than one variable. Consider the function

f(x) =

 0 if x = y = 0
xy√
x2 + y2

otherwise

This function is continuous everywhere, but it’s
not differentiable at (x, y) = (0, 0). The graph
z = f(x, y) has no tangent plane there. There are
directional derivatives in two directions, namely,
along the x-axis the function is constantly 0, so the

partial derivative
df

dx
is 0; likewise along the y-axis,

and
df

dy
is 0.

But in all other directions, the directional deriva-
tive does not exist. For instance, along the line
y = x the function is f(x, x) = |x|/

√
2, which has

no derivative at x = 0.
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