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Directional derivatives. Consider a scalar field
f:R™ = Ron R". So far we have only considered
the partial derivatives in the directions of the axes.

0
For instance —f gives the rate of change along a
x

line parallel to the z-axis. What if we want the
rate of change in a direction which is not parallel
to an axis?

First, we can identify directions as unit vectors,
those vectors whose lengths equal 1. Let u be such
a unit vector, |[u|| = 1. Then we define the direc-
tional derivative of f in the direction u as being the
limit

Dufia) = iy L0710~ )

This is the rate of change as x — a in the direction
u. When u is the standard unit vector e;, then,
as expected, this directional derivative is the ¢*}
partial derivative, that is, De, f(a) = f,(a).

These directional derivatives are linear combi-
nations of the partial derivatives, at least when
f is differentiable. Note that the direction u =
(u1,us,...,uy,) is a linear combination of the stan-
dard unit vectors:

u = uje; + uUgey + - - - + uUpey.
And, when f is differentiable, it is well-

approximated by the linear function ¢ that de-
scribes the tangent plane, that is, by g(x) =

f@) + for () (21 — a1) + -+ + fo, (a) (20 — an).

Therefore,
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In other notation, the directional derivative is the
dot product of the gradient and the direction

Dyf(a) = Vf(a)-u

We can interpret this as saying that the gradient,
Vf(a), has enough information to find the deriva-
tive in any direction.

Steepest ascent. The gradient Vf(a) is a vector
in a certain direction. Let u be any direction, that
is, any unit vector, and let 6 be the angle between
the vectors Vf(a) and u. Now, we may conclude
that the directional derivative

Dyf(a) = Vf(a) -u = [|Vf(a)|| cosd

since, in general, the dot product of two vectors b
and c is

b-c=|b|l|c|| cosb

but in our case, u is a unit vector. But cos@ is
between —1 and 1, so the largest the directional
derivative D, f(a) can be is when 6 is 0, that is
when u is the direction of the gradient Vf(a).

In other words, the gradient Vf(a) points in the
direction of the greatest increase of f, that is, the
direction of steepest ascent. Of course, the oppo-
site direction, —Vf(a), is the direction of steepest
descent.

Example 1. Find the curves of steepest descent
for the ellipsoid

42?4+ 1y + 42% = 16 for z > 0.
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If we can describe the projections of the curves in
the (z,y)-plane, that’s enough. This ellipsoid is the
graph of a function f : R? — R given by

flay) = 1/16 — 402 — 2.

The gradient of this function is

of of
(%’8_11)

B —2x —y
V16 — 422 — 2 2,/16 — 422 — 2
The curve of steepest descent will be in the opposite
direction, —Vf.
So, we're looking for a path x(t) = (z(t),y(t))
whose derivative is —Vf. In other words, we need
two functions z(t) and y(t) such that

Vf

2
() = . ,
V16 — 42?2 — 32
y
y'(t) =

24/16 — 422 — 2

Each is a differential equation with independent
variable t. We can eliminate ¢ from the discussion

since
dy dy ydr vy
de  dt/ dt 22
A common method to solve differential equations
is separation of variables, which we can use here.

From the last equation, we get

dy dz
Yy 4z
and, then integrating,
dy dx
/515

SO
In|y| = }Lln|a:| +C,

which gives us, writing A for e,

ly| = AV/]z].

That describes the curves of steepest descent as a
family of curves parameterized by the real constant
A (different from the last constant A)

= Ay’

Tangent planes. We can, of course, use gradi-
ents to find equations for planes tangent to surfaces.
A typical surface in R? is given by an equation

flz,y,2z) =c.

That is to say, a surface is a level set of a scalar-
valued function f : R® — R. More generally, a typ-
ical hypersurface in R"! is a level set of a function
f:R"—=R.

Now, the gradient Vf(a) of f points in the di-
rection of the greatest change of f, and vectors or-
thogonal to Vf(a) point in directions of 0 change
of f, that is to say, they lie on the tangent plane.
Another way of saying that is that Vf(a) is a vector
normal to the surface. If x is any point in R3, then

Vf(a)-(a—x) =0
says that the vector a — x is orthogonal to Vf(a),

and therefore lies in the tangent plane, and so x is
a point on that plane.

Example 2 (Continuous, nondifferentiable func-
tion). You're familiar with functions of one vari-
able that not continuous everywhere. For example,
f(z) = |z| is continuous, and it’s differentiable ev-
erywhere except at x = 0. The left derivative is —1
there, but the right derivative is 1.

Things like that can happen for functions of more



than one variable. Consider the function

0 ifr=y=0
flz) = % otherwise

This function is continuous everywhere, but it’s
not differentiable at (z,y) = (0,0). The graph
z = f(z,y) has no tangent plane there. There are
directional derivatives in two directions, namely,
along the z-axis the function is constantly 0, so the

d,
partial derivative d_f is 0; likewise along the y-axis,
x

and T is 0.

But in all other directions, the directional deriva-
tive does not exist. For instance, along the line
y = x the function is f(z,z) = |z|/v/2, which has
no derivative at = = 0.
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