
Length, dot products, and
cross products in R3

Math 131 Multivariate Calculus
D Joyce, Spring 2014

Length, dot products, and cross products to-
gether allow us to do geometry in three dimensions.
This page is a quick review of them, not a complete
study.

Length and distance. The length ‖(a1, a2, a3)‖
of a vector a = (a1, a2, a3) (also called its norm) is
defined as

‖(a1, a2, a3)‖ =
√
a21 + a22 + a23.

The length of a vector a is just the distance from a
to the origin 0 = (0, 0, 0).

The distance between two vectors a = (a1, a2, a3)
and b = (b1, b2, b3) is the length of the displacement
vector b− a between them

‖(b1, b2, b3)− (a1, a2, a3)‖ =√
(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2.

Scaling a vector, that is, multiplying it by a con-
stant c changes its length by a factor of the absolute
value of c

‖ca‖ = |c| ‖a‖.
The triangle inequality holds for vectors

‖a− b‖ ≤ ‖a‖+ ‖b‖.

�
�
�
�
�
�
�
��

0
��
��

��
��

��
��1

b
HH

HHH
HHHj a

It expresses the fact that one side of a triangle
a − b is no longer than the sum of the other two
‖a‖+ ‖b‖. See Euclid’s Elements Proposition I.20
for Euclid’s proof of this inequality.

Unit vectors. A unit vector is a vector whose
length is 1. We can interpret unit vectors as being
directions, and we can use them in place of angles
since they carry the same information as an angle.
Unit vectors can be identified with points on the
unit sphere

S2 = {(x, y, z) |x2 + y2 + z2 = 1}.

Now that we can talk about the length of a vec-
tor, we can construct a unit vector in the same
direction as a given vector simply by dividing by
its length. If a is a vector in R3, the unit vector in
the same direction is

u =
a

‖a‖
.

We can rewrite that equation as

a = ‖a‖u

which says that a vector a is the product of its
length and its direction.

Dot products. The dot products a · b of vec-
tors (sometimes called inner products and denoted
〈a|b〉) is the sum of the products of corresponding
coordinates, that is,

a · b = (a1, a2, a3) · (b1, b2, b3)
= a1b1 + a2b2 + a3b3

Notice right away that we can interpret the
square of the length of the vector as an inner prod-
uct. Since

‖a‖2 = a21 + a22 + a23,

therefore
‖a‖2 = a · a.

Because of this connection between norm and inner
product, we can often reduce computations involv-
ing length to simpler computations involving inner
products.

Inner products are commutative:

a · b = b · a.

1

http://www.clarku.edu/
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookI/propI20.html


Also, inner products distribute over addition,

a · (b + c) = (a · b) + (a · c),

and over subtraction,

a · (b− c) = (a · b)− (a · c),

and the inner product of any vector and the 0 vec-
tor is 0

a · 0 = 0.

Furthermore, dot products and scalar products
have a kind of associativity, namely, if c is a scalar,
then

(cu) · v = c(u · v) = u · (cv).

These last few statements can be summarized by
saying that dot products are linear in each coordi-
nate, or that dot products are bilinear operations.

The dot product of two vectors and the co-
sine of the angle between them. The law of
cosines for oblique triangles says that given a tri-
angle with sides a, b, and c, and angle θ between
sides a and b,
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c2 = a2 + b2 − 2ab cos θ.

Now, start with two vectors a and b, and place
them in the plane with their tails at the same point.
Let θ be the angle between these two vectors. The
vector that joins the head of a to the head of b is
b − a. Now we can use the law of cosines to see
that
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b− a

‖b− a‖2 = ‖a‖2 + ‖v‖2 − 2‖a‖ ‖b‖ cos θ.

We can convert the distances to dot products to
simplify this equation.

‖b− a‖2 = (b− a) · (b− a)

= b · b− 2b · a + a · a
= ‖b‖2 − 2b · a + ‖a‖2

Now, if we subtract ‖a‖2 + ‖b‖2 from both sides of
our equation, and then divide by −2, we get

a · b = ‖a‖ ‖b‖ cos θ.

That gives us a way of geometrically interpreting
the dot product. We can also solve the last equation
for cos θ,

cos θ =
a · b
‖a‖ ‖b‖

,

which will allow us to do trigonometry by means of
linear algebra. Note that

θ = arccos

(
a · b
‖a‖ ‖b‖

)
.

Orthogonal vectors. The word “orthogonal” is
synonymous with the word “perpendicular,” but for
some reason is preferred in many branches of math-
ematics. We’ll write w ⊥ v if the vectors w and v
are orthogonal, or perpendicular.
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Two vectors are orthogonal if the angle between
them is 90◦. Since the cosine of 90◦ is 0, that means

w ⊥ v if and only if 〈w|v〉 = 0

Two vectors are orthogonal, a ⊥ b, if and only if
their dot product is 0.

Projections of one vector onto another. The
projection of one vector b onto another vector a is
defined to be the vector

projab =
b · a
‖a‖2

a.

It’s the component of b in the direction of a. This
projection of one vector on another is useful in an-
swering some questions about geometry using linear
algebra.

The definition of cross products. The cross
product × : R3 × R3 → R3 is an operation that
takes two vectors u and v in space and determines
another vector u× v in space. (Cross products are
sometimes called outer products, sometimes called
vector products.) Although we’ll define u × v al-
gebraically, its geometric meaning is more under-
standable.
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u× v

The cross product u×v is determined by its length
and its direction. It’s length is equal to the area of
the parallelgram whose sides are u and v, and that

area is the length of u times the length of v times
the sine of the angle θ between them. Thus

‖u× v‖ = ‖u‖ ‖v‖ cos θ

The direction of u × v will be orthogonal to the
plane of u and v in a direction determined by
a right-hand rule (when the coordinate system is
right-handed).

The easiest way to define cross products is to use
the standard unit vectors i, j, and k for R3. If

u = (u1, u2, u3) = u1i + u2j + u3k,

and
v = (v1, v2, v3) = v1i + v2j + v3k,

then u× v is defined as

u×v = (u2v3−u3v2)i+(u3v1−u1v3)j+(u1v2−u2v1)k

which is much easier to remember when you write
it as a determinant

u× v =

∣∣∣∣ u2 u3
v2 v3

∣∣∣∣ i− ∣∣∣∣ u1 u3
v1 v3

∣∣∣∣ j +

∣∣∣∣ u1 u2
v1 v2

∣∣∣∣k
=

∣∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
Properties of cross products. There are a
whole lot of properties that follow from this defi-
nition. First of all, it’s anticommutative

v × u = −(u× v),

so any vector cross itself is 0

v × v = 0.

It’s bilinear, that is, linear in each argument, so it
distributes over addition and subtraction, 0 acts as
zero should, and you can pass scalars in and out of
arguments

u× (v ±w) = (u× v)± (u×w)

(u± v)×w = (u×w)± (v ×w)
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0× v = 0 = v × 0

c(u× v) = (cu)× v = u× (cv)

A couple more properties you can check from the
definition, or from the properties already found are
that 〈u×v|u〉 = 0 and 〈u×v|v〉 = 0. Those imply
that the vector u× v is orthogonal to both vectors
u and v, and so it is orthogonal to the plane of u
and v.

Standard unit vectors and cross products.
Interesting things happen when we look specifically
at the cross products of standard unit vectors. Of
course

i× i = j× j = k× k = 0,

since any vector cross itself is 0. But

i× j = k, j× k = i, k× i = j,

and

j× i = −k, k× j = −i, i× k = −j,

all of which follows directly from the definition.

Length of the cross product, areas of trian-
gles and parallelograms. A direct computation
(which we’ll omit) shows that

‖u× v‖ = ‖u‖ ‖v‖ sin θ

where θ is the angle between the vectors u and v.
Consider a triangle in 3-space where two of the

sides are u and v.
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Taking u to be the base of the triangle, then the
height of the triangle is ‖v‖ sin θ, where θ is the

angle between u and v. Therefore, the area of this
triangle is

Area = 1
2
‖u‖ ‖v‖ sin θ = 1

2
‖u× v‖.

(In general, the area of a any triangle is half the
product of two adjacent sides and the sine of the
angle between them.)

Area of a parallelogram in R3. Now consider
a parallelogram in 3-space where two of the sides
are u and v.
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Of course, if the triangle is doubled to a parallelo-
gram, then the area of the parallelogram is ‖u×v‖.

Thus, the norm of a cross product is the area of
the parallelgram bounded by the vectors.

We now have a geometric characterization of the
cross product. The cross product u×v is the vector
orthogonal to the plane of u and v pointing away
from it in a the direction determined by a right-
hand rule, and its length equals the area of the
parallelgram whose sides are u and v.

Note that u× v is 0 if and only if u and v lie in
a line, that is, they point in the same direction or
the directly opposite directions.

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/
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