$\underset{\text { UNIVERSITY }}{\text { CLAR }}$

Gauss's theorem

Math 131 Multivariate Calculus

D Joyce, Spring 2014
The statement of Gauss's theorem, also known as the divergence theorem. For this theorem, let D be a 3 -dimensional region with boundary ∂D. This boundary ∂D will be one or more surfaces, and they all have to be oriented in the same way, away from D. Let \mathbf{F} be a vector field in \mathbf{R}^{3}. Gauss' theorem equates a surface integral over ∂D with a triple integral over D. It says that the integral of \mathbf{F} over ∂D equals the divergence of \mathbf{F} over the region $D: \iint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V$.

An interpretation of Gauss's theorem. If $\mathbf{F}(\mathbf{x})$ is the velocity of a fluid at x , then Gauss's theorem says that the total divergence within the 3 -dimensional region D is equal to the flux through the boundary ∂D. The divergence at \mathbf{x} can be thought of the rate of expansion of the fluid at \mathbf{x}.

Example 1. Let D be the region

The surface $x^{2}+y^{2}+1=z$ is a paraboloid opening upward (positive z being upward) with vertex on the z-axis at $z=1$. Above that surface and below the plane $z=5$ lies the 3 -dimenional region D. The top surface of D is a circle of radius 2 . Let \mathbf{F} be the vector field

$$
\mathbf{F}(x, y, z)=\left(x^{2}, y, z\right) .
$$

We'll verify Gauss's theorem.
First, let's find $\iiint_{D} \nabla \cdot \mathbf{F} d V$, the triple integral of the divergence of \mathbf{F} over D.
The divergence of \mathbf{F} is

$$
\nabla \cdot \mathbf{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}=2 x+2 .
$$

If we interpret $\mathbf{F}(x, y, z)$ as the velocity of a flow of a fluid, than that flow has a positive divergence for $x>-1$ and negative divergence for $x<-1$. It's expanding in the first case; contracting in the second. So, in most of the paraboloid D the fluid is expanding.
We'll use cylindrical coordinates to evaluate the triple integral.

$$
\begin{aligned}
& \iiint_{D} \nabla \cdot \mathbf{F} d V \\
= & \iiint_{D}(2 x+2) d V \\
= & \iiint_{D}(2 r \cos \theta+2) r d r d \theta d z \\
= & \int_{0}^{2} \int_{1+r^{2}}^{5} \int_{0}^{2 \pi}\left(2 r^{2} \cos \theta+2 r\right) d \theta d z d r \\
= & \int_{0}^{2} \int_{1+r^{2}}^{5} 4 \pi r d z d r \\
= & \int_{0}^{2} 4 \pi r\left(4-r^{2}\right) d r=16 \pi
\end{aligned}
$$

Since this integral of the divergence is positive, overall the fluid is expanding.

Now, let's go on to the harder task of evaluating the surface integral $\iint_{\partial D} \mathbf{F} \cdot d \mathbf{S}$. The surface ∂D comes in two parts. One is the top disk S_{1} at height $z=5$ and radius 2 . The other is the parabolic surface S_{2}. We can parametrize both of them over the domain $D^{\prime}=\left\{(s, t) \mid s^{2}+t^{2}<4\right\}$. A parametrization of S_{1} is

$$
\mathbf{X}_{1}(s, t)=(s, t, 5)
$$

while a parametrization of S_{2} is

$$
\mathbf{X}_{2}(s, t)=\left(s, t, s^{2}+t^{2}+1\right)
$$

The normal vector for \mathbf{X}_{1} is $\mathbf{N}_{1}=(0,0,1)$ since it's a flat horizontal plane. We'll compute the normal vector for S_{2}.

$$
\mathbf{N}_{2}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & 2 s \\
0 & 1 & 2 t
\end{array}\right|=(-2 s,-2 t, 1)
$$

\mathbf{N}_{2}. We'll compute the two surface integrals.

$$
\begin{aligned}
& \iint_{\mathbf{X}_{1}} \mathbf{F} \cdot d \mathbf{S} \\
= & \iint_{\mathbf{X}_{1}} \mathbf{F} \cdot \mathbf{N} d s d t \\
= & \iint_{D^{\prime}}\left(x^{2}, t, 5\right) \cdot(0,0,1) d s d t \\
= & \iint_{D^{\prime}} 5 d s d t \\
= & 5 \operatorname{Area}\left(D^{\prime}\right)=20 \pi \\
= & \iint_{\mathbf{X}_{2}} \mathbf{F} \cdot d \mathbf{S} \\
= & \iint_{\mathbf{X}_{2}} \mathbf{F} \cdot \mathbf{N} d s d t \\
= & \iint_{D^{\prime}}\left(-2 s^{3}, t, s^{2}+t^{2}+1\right) \cdot\left(-2 t^{2}+s^{2}+t^{2}+1\right) d s d t \\
= & 4 \pi
\end{aligned}
$$

Since $16 \pi=20 \pi-4 \pi$, we have verified Gauss's theorem.

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/

Actually, there's a problem here, since the normal vector \mathbf{N}_{2} points in toward the 3-dimensional region D. That means we'll have

$$
\iint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iint_{\mathbf{X}_{1}} \mathbf{F} \cdot d \mathbf{S}-\iint_{\mathbf{X}_{2}} \mathbf{F} \cdot d \mathbf{S}
$$

where the minus sign takes care of the direction of

