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The statement of Gauss’s theorem, also
known as the divergence theorem. For this
theorem, let D be a 3-dimensional region with
boundary ∂D. This boundary ∂D will be one or
more surfaces, and they all have to be oriented in
the same way, away from D. Let F be a vector field
in R3. Gauss’ theorem equates a surface integral
over ∂D with a triple integral over D. It says that
the integral of F over ∂D equals the divergence of

F over the region D:

∫∫
∂D

F ·dS =

∫∫∫
D

∇·F dV.

An interpretation of Gauss’s theorem. If
F(x) is the velocity of a fluid at x, then Gauss’s
theorem says that the total divergence within the
3-dimensional region D is equal to the flux through
the boundary ∂D. The divergence at x can be
thought of the rate of expansion of the fluid at x.

Example 1. Let D be the region

D = {(x, y, z) |x2 + y2 + 1 ≤ z ≤ 5}.

The surface x2 +y2 + 1 = z is a paraboloid opening
upward (positive z being upward) with vertex on
the z-axis at z = 1. Above that surface and below
the plane z = 5 lies the 3-dimenional region D. The
top surface of D is a circle of radius 2. Let F be
the vector field

F(x, y, z) = (x2, y, z).

We’ll verify Gauss’s theorem.
First, let’s find

∫∫∫
D
∇ ·F dV , the triple integral

of the divergence of F over D.
The divergence of F is

∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
= 2x+ 2.

If we interpret F(x, y, z) as the velocity of a flow
of a fluid, than that flow has a positive divergence
for x > −1 and negative divergence for x < −1.
It’s expanding in the first case; contracting in the
second. So, in most of the paraboloid D the fluid
is expanding.

We’ll use cylindrical coordinates to evaluate the
triple integral.

∫∫∫
D

∇ · F dV

=

∫∫∫
D

(2x+ 2) dV

=

∫∫∫
D

(2r cos θ + 2) r dr dθ dz

=

∫ 2

0

∫ 5

1+r2

∫ 2π

0

(2r2 cos θ + 2r) dθ dz dr

=

∫ 2

0

∫ 5

1+r2
4πr dz dr

=

∫ 2

0

4πr(4− r2) dr = 16π

Since this integral of the divergence is positive,
overall the fluid is expanding.
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Now, let’s go on to the harder task of evaluat-
ing the surface integral

∫∫
∂D

F · dS. The surface
∂D comes in two parts. One is the top disk S1

at height z = 5 and radius 2. The other is the
parabolic surface S2. We can parametrize both of
them over the domain D′ = {(s, t) | s2 + t2 < 4}. A
parametrization of S1 is

X1(s, t) = (s, t, 5),

while a parametrization of S2 is

X2(s, t) = (s, t, s2 + t2 + 1).

The normal vector for X1 is N1 = (0, 0, 1) since it’s
a flat horizontal plane. We’ll compute the normal
vector for S2.

N2 =

∣∣∣∣∣∣
i j k
1 0 2s
0 1 2t

∣∣∣∣∣∣ = (−2s,−2t, 1).

Actually, there’s a problem here, since the normal
vector N2 points in toward the 3-dimensional region
D. That means we’ll have

∫∫
∂D

F · dS =

∫∫
X1

F · dS−
∫∫

X2

F · dS

where the minus sign takes care of the direction of

N2. We’ll compute the two surface integrals.∫∫
X1

F · dS

=

∫∫
X1

F ·N ds dt

=

∫∫
D′

(x2, t, 5) · (0, 0, 1) ds dt

=

∫∫
D′

5 ds dt

= 5 Area(D′) = 20π∫∫
X2

F · dS

=

∫∫
X2

F ·N ds dt

=

∫∫
D′

(s2, t, s2 + t2 + 1) · (−2s,−2t, 1) ds dt

=

∫∫
D′

(−2s3 − 2t2 + s2 + t2 + 1) ds dt

= 4π

Since 16π = 20π − 4π, we have verified Gauss’s
theorem.
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