

Green's theorem Math 131 Multivariate Calculus D Joyce, Spring 2014

Introduction. We'll introduce but not prove Green's theorem today. We'll see how it leads to what are called Stokes' theorem and the divergence theorem in the plane. Next time we'll outline a proof of Green's theorem, and later we'll look at Stokes' theorem and the divergence theorem in 3space.

Green's theorem as a generalization of the fundamental theorem of calculus. Recall one form of the fundamental theorem of calculus:

$$\int_a^b f'(x) \, dx = f(b) - f(a).$$

This theorem equates the integral of one function, namely f'(x), over a 1-dimensional region [a, b] to the difference of the values of a related function, namely f(x), at the boundary of that region, the boundary being the endpoints of the interval.

Is there a 2-dimensional analogue? Can we find an equation that equates a double integral $\iint_D F(x, y) dx dy$ over a 2-dimensional region D to an integral \int_C of some related function over the boundary C of D? Since D is a region in the plane, its boundary, $C = \partial D$, is a curve, or perhaps several curves if D has holes in it.

Yes, there is a 2-dimensional analogue, and it's called Green's theorem, or sometimes Ostrogradsky's theorem. Here it is.

Let D be a closed, bounded region in \mathbb{R}^2 with boundary $C = \partial D$ which is one or a finite number of closed curves. Let the closed curves of C be oriented so that D is on the left as C is traversed. Let $\mathbf{F} = (M, N)$ be a vector field, that is, M and N are both scalar fields. Then

$$\oint_C M \, dx + N \, dy = \iint_D \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy.$$

Here, the symbol \oint is just a variant of \int that's often used for line integrals when the line is a closed curve or a finite union of closed curves.

Example 1. Let $\mathbf{F} = (M, N) = (2y, x)$ and D is the semicircular region $x^2 + y^2 \leq a^2$ with $y \geq 0$. The 2-dimensional region D includes the interior of the semicircle, while its boundary $C = \partial D$ is the closed curve only (made up of half the circumference of a circle and a line segment).

Green's theorem equates a path integral $\oint_{\partial D}$ over the boundary ∂D of a region D to a double integral \iint_D over the region. If **F** is a plane vector field with coordinate functions M and N, **F** = (M, N), then Green's theorem says

$$\oint_{\partial D} \mathbf{F} \cdot ds = \oint_{\partial D} M \, dx + N \, dy = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA.$$

Green's theorem can be interpreted in a couple of ways that give it some meaning, and later we'll generalize these interpretations as theorems in \mathbb{R}^3 . The first interpretation is a version of *Stokes' theorem*. Stokes' theorem involves the curl of the vector field \mathbf{F} . The second interpretation is the divergence theorem (also called Gauss' theorem) in the plane which, of course, involves the divergence of the vector field \mathbf{F} .

Stokes' theorem for the plane. The vector field $\mathbf{F} = (M, N)$ is a two-dimensional vector field, not a three-dimensional one, so it doesn't have a curl as we defined curl. But two-dimensional vector fields are commonly assigned curls as follows. Make \mathbf{F} to be a three-dimensional vector field by setting the third component function to be 0. Then $\mathbf{F} = (M, N, 0)$ has a curl $\nabla \times \mathbf{F}$, and we can calculate that curl.

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ M & N & 0 \end{vmatrix} = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \mathbf{k}$$

This curl $\nabla \times \mathbf{F}$ is a vector, but it only has a component in the **k** direction. We can dot it with **k** to

formally make it into a scalar value

$$(\nabla \times \mathbf{F}) \cdot \mathbf{k} = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right)$$

since $\mathbf{k} \cdot \mathbf{k} = 1$. That means we can rewrite Green's theorem as

$$\oint_{\partial D} \mathbf{F} \cdot ds = \iint_{D} (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA.$$

In words, that says the integral of the vector field \mathbf{F} around the boundary ∂D equals the integral of the curl of \mathbf{F} over the region D.

The divergence theorem in the plane. For each pont on the curve ∂D , let **n** be the *outward unit normal vector*, that is, a unit vector orthogonal to the curve and pointing away from the region D. Then the divergence theorem says

$$\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \nabla \cdot \mathbf{F} \, dA$$

Proof. The boundary ∂D is made of one or more simple closed curves. Let $\mathbf{x}(t)$ for $a \leq t \leq b$ parameterize one of them. The unit tangent vector at a point $\mathbf{x}(t)$ on this curve is

$$\mathbf{T}(t) = \frac{\mathbf{x}'(t)}{\|\mathbf{x}'(t)\|} = \frac{(x'(t), y'(t))}{\|\mathbf{x}'(t)\|}$$

When you rotate the unit tangent vector \mathbf{T} by 90° clockwise, you get the normal vector \mathbf{n} :

$$\mathbf{n} = \frac{(y'(t), -x'(t))}{\|\mathbf{x}'(t)\|}.$$

Therefore,

$$\int_{\mathbf{x}} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{a}^{b} \mathbf{F} \cdot \mathbf{n}(t) \| \mathbf{x}'(t) \| \, dt$$
$$= \int_{a}^{b} (M, N) \cdot (y'(t), -x'(t)) \, dt$$
$$= \int_{a}^{b} (My'(t) - Nx'(t)) \, dt$$
$$= \int_{\mathbf{x}} M \, dy - N \, dx$$

Since that equation holds for every component curve in ∂D , it holds for the whole boundary:

$$\int_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \int_{\partial D} -N \, dx + M \, dy.$$

But Green's theorem says

$$\int_{\partial D} -N \, dx + M \, dy = \iint_D \left(\frac{\partial M}{\partial x} - \frac{\partial (-N)}{\partial y} \right) dA,$$

therefore

$$\int_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) dA.$$

But that last integral is just $\iint_D \nabla \cdot \mathbf{F} \, dA$. Q.E.D.

In words, this divergence theorem says that the integral around the boundary ∂D of the the normal component of the vector field \mathbf{F} equals the double integral over the region D of the divergence of \mathbf{F} .

When **F** is the velocity of a flow on the plane, then its normal component $\mathbf{F} \cdot \mathbf{n}$ gives the rate of flow at that point on the boundary, and the integral $\int_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds$ describes the total flow rate across ∂D , called the *flux* of **F** across ∂D .

Math 131 Home Page at http://math.clarku.edu/~djoyce/ma131/