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Introduction. We’ll introduce but not prove
Green’s theorem today. We’ll see how it leads to
what are called Stokes’ theorem and the divergence
theorem in the plane. Next time we’ll outline a
proof of Green’s theorem, and later we’ll look at
Stokes’ theorem and the divergence theorem in 3-
space.

Green’s theorem as a generalization of the
fundamental theorem of calculus. Recall one
form of the fundamental theorem of calculus:∫ b

a

f ′(x) dx = f(b)− f(a).

This theorem equates the integral of one function,
namely f ′(x), over a 1-dimensional region [a, b] to
the difference of the values of a related function,
namely f(x), at the boundary of that region, the
boundary being the endpoints of the interval.

Is there a 2-dimensional analogue? Can we
find an equation that equates a double integral∫∫

D
F (x, y) dx dy over a 2-dimensional region D to

an integral
∫
C

of some related function over the
boundary C of D? Since D is a region in the plane,
its boundary, C = ∂D, is a curve, or perhaps sev-
eral curves if D has holes in it.

Yes, there is a 2-dimensional analogue, and it’s
called Green’s theorem, or sometimes Ostrograd-
sky’s theorem. Here it is.

Let D be a closed, bounded regtion in R2 with
boundary C = ∂D which is one or a finite number
of closed curves. Let the closed curves of C be
oriented so that D is on the left as C is traversed.
Let F = (M,N) be a vector field, that is, M and
N are both scalar fields. Then∮

C

M dx + N dy =

∫∫
D

(
∂N

∂x
− ∂M

∂y

)
dx dy.

Here, the symbol
∮

is just a variant of
∫

that’s often
used for line integrals when the line is a closed curve
or a finite union of closed curves.

Example 1. Let F = (M,N) = (2y, x) and D is
the semicircular region x2+y2 ≤ a2 with y ≥ 0. The
2-dimensional region D includes the interior of the
semicircle, while its boundary C = ∂D is the closed
curve only (made up of half the circumference of a
circle and a line segment).

Green’s theorem equates a path integral
∮
∂D

over
the boundary ∂D of a region D to a double integral∫∫

D
over the region. If F is a plane vector field with

coordinate functions M and N , F = (M,N), then
Green’s theorem says∮
∂D

F·ds =

∮
∂D

M dx+N dy =

∫∫
D

(
∂N

∂x
− ∂M

∂y

)
dA.

Green’s theorem can be interpreted in a couple
of ways that give it some meaning, and later we’ll
generalize these interpretations as theorems in R3.
The first interpretation is a version of Stokes’ theo-
rem. Stokes’ theorem involves the curl of the vector
field F. The second interpretation is the divergence
theorem (also called Gauss’ theorem) in the plane
which, of course, involves the divergence of the vec-
tor field F.

Stokes’ theorem for the plane. The vector
field F = (M,N) is a two-dimensional vector field,
not a three-dimensional one, so it doesn’t have a
curl as we defined curl. But two-dimensional vec-
tor fields are commonly assigned curls as follows.
Make F to be a three-dimensional vector field by
setting the third component function to be 0. Then
F = (M,N, 0) has a curl ∇×F, and we can calcu-
late that curl.

∇×F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
M N 0

∣∣∣∣∣∣ =

(
∂N

∂x
− ∂M

∂y

)
k

This curl ∇×F is a vector, but it only has a com-
ponent in the k direction. We can dot it with k to
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formally make it into a scalar value

(∇× F) · k =

(
∂N

∂x
− ∂M

∂y

)
since k ·k = 1. That means we can rewrite Green’s
theorem as∮

∂D

F · ds =

∫∫
D

(∇× F) · k dA.

In words, that says the integral of the vector field
F around the boundary ∂D equals the integral of
the curl of F over the region D.

The divergence theorem in the plane. For
each pont on the curve ∂D, let n be the outward
unit normal vector, that is, a unit vector orthogonal
to the curve and pointing away from the region D.
Then the divergence theorem says∮

∂D

F · n ds =

∫∫
D

∇ · F dA.

Proof. The boundary ∂D is made of one or more
simple closed curves. Let x(t) for a ≤ t ≤ b param-
eterize one of them. The unit tangent vector at a
point x(t) on this curve is

T(t) =
x′(t)

‖x′(t)‖
=

(x′(t), y′(t))

‖x′(t)‖

When you rotate the unit tangent vector T by 90◦

clockwise, you get the normal vector n:

n =
(y′(t),−x′(t))
‖x′(t)‖

.

Therefore,∫
x

F · n ds =

∫ b

a

F · n(t) ‖x′(t)‖ dt

=

∫ b

a

(M,N) ·
(
y′(t),−x′(t)

)
dt

=

∫ b

a

(
My′(t)−Nx′(t)

)
dt

=

∫
x

M dy −N dx

Since that equation holds for every component
curve in ∂D, it holds for the whole boundary:∫

∂D

F · n ds =

∫
∂D

−N dx + M dy.

But Green’s theorem says∫
∂D

−N dx + M dy =

∫∫
D

(
∂M

∂x
− ∂(−N)

∂y

)
dA,

therefore∫
∂D

F · n ds =

∫∫
D

(
∂M

∂x
+

∂N

∂y

)
dA.

But that last integral is just

∫∫
D

∇·F dA. q.e.d.

In words, this divergence theorem says that the
integral around the boundary ∂D of the the normal
component of the vector field F equals the double
integral over the region D of the divergence of F.

When F is the velocity of a flow on the plane,
then its normal component F · n gives the rate of
flow at that point on the boundary, and the integral∫
∂D

F ·n ds describes the total flow rate across ∂D,
called the flux of F across ∂D.

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/

2

http://math.clarku.edu/~djoyce/ma131/
http://math.clarku.edu/~djoyce/ma131/

