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Higher-order derivatives. Let’s start with a
function f: R? — R and only consider its second-
order partial derivatives. Take, for example,

f(z,y) = (x +y)e.

We can easily compute its two first-order partial
derivatives.
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Each of these two functions, in turn, has two par-
tial derivatives. Their partials with respect to x are

fy e/ + (z+y)e’ = (1+z+y)e
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Notice how the two different notations for partials
indicate the order of taking derivatives differently.
The partials with respect to y are
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Thus, there are four second-order partial deriva-
tives of this function f. Notice that in this example
the two mixed partial derivatives are equal, that is,
fyz = foy- These two mixed partials are usually
equal. We won’t prove the following theorem, but
we’ll frequently use it.

Theorem 1. When the first and second partials of
a function of two variables x and y are all continu-
ous functions, the order that the partials are taken
doesn’t matter, that is, f,, = fsy, or in partial no-
tation
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Functions that have continuous first and second
partial derivatives are called C? functions, or func-
tions of class C%.

The concept of second-order derivatives general-
izes as you would expect it to for third- and higher-
order derivatives, and not just to functions R? — R
but to scalar-valued functions R™ — R in general.
The text has several examples, and you’ll be work-
ing out more in the exercises.

Preview of an application of second-order
partial derivatives. You'll recall from calculus
of one variable that second derivatives were used in
something called the second-derivative test for ex-
treme values. You used it on critical points, that
is, values of x where f’(z) was 0. It said that if the
second derivative was positive at a critical point,
then f had a minimum there, but if the second
derivative was negative, then a maximum.

Things are more complicated in higher dimen-
sions since there are more directions to consider.
All the second order partial derivatives come into
play. A particular matrix called the Hessian is filled
with them, and it’s used to determine the character
of critical points.

Minimal surfaces, another application A
surface with a given boundary is called a minimal
surface if among all surfaces with that boundary it
has the least area. Of course, a circle bounds its
interior, but that’s not interesting since it’s planar.
We're interested in the non planar ones. The first
two were the catenoid and helicoid.

An interesting minimal surface is Costa’s, illus-
trated in figure 1. It was constructed in 1982 by
Celso José da Costa. Its boundary consists of three



Figure 1: Costa’s minimal surface

Figure 2: Scherk’s surface

circular components. See the wiki article Costa’s| Nath 131 Home Pagd at

minimal surface for details about it.

You can make your own minimal surfaces by dip-
ping bent clothes hangers in a soapy solution, but
don’t let there be any bubbles. A spherical bubble
isn’t a minimal surface.

It turns out that if a minimal surface is the graph
z = f(z,y) of a function two variables, then

(1+ Zy)sz =(1+ Zﬁ)zyy

and conversely, functions whose derivatives satisfy
that partial differential equation have graphs that
are minimal surfaces. One such graph is Scherk’s
surface.

Example 2 (Scherk’s surface). Heinrich Scherk
constructed some embedded minimal surfaces in
1834. This surface has the equation

e“cosy = cos.

The part of the surface above the square
[—1.5,1.5] x [-1.5,1.5] is illustrated in figure 2. As
an exercise, verify that (14 z,)%2.. = (14 22)zy,
holds for this surface.

http://math.clarku.edu/~djoyce/mal31/
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