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Jacobians for change of variables. Since dou-
ble integrals are iterated integrals, we can use the
usual substitution method when we’re only work-
ing with one variable at a time. But there’s also
a way to substitute pairs of variables at the same
time, called a change of variables. Some integrals
can be evaluated most easily by change of variables.
In particular, changing to polar coordinates is often
helpful.

If the original variables are (x, y), and the new
variables are (u, v), then there’s a function T :
R2 → R2 that gives u and v in terms of x and y,
that is, T(u, v) = (x(u, v), y(u, v). We’ll see that
we need something called the Jacobian, denoted
∂(x, y)

∂(u, v)
, to effect a change of variables in double

integrals.
First, we’ll review ordinary substitution for sin-

gle variables to see what we’re generalizing. Sec-
ond, we’ll look at a change of variables in the spe-
cial case where that change is effected by a linear
transformation T : R2 → R2. Finally, we’ll look at
the general case where T doesn’t have to be linear.

Recall the change of variables for single in-
tegrals. Let’s start with an indefinite integral∫

f(x) dx

and apply a substitution x = x(u). Note that we’re
using x both as a variable and a function, but if
you prefer, you can use a different symbol for the
function. After substitution, we get the integral∫

f(x) dx =

∫
f(x(u))

dx

du
du.

Now let’s add limits of integration. If the limits
of integration for u are a and b, then the limits of
integration for x will be x(a) and x(b).∫ x(b)

x(a)

f(x) dx =

∫ b

a

f(x(u))
dx

du
du.

We want to generalize this to multiple integrals.

Before we do, however, let’s change the interval
of integration into a domain of integration since
when we generalize to two variables, we’ll be talking
about domains. Let D∗ denote the interval [a, b],
which is a subset of R, and let D = [x(a), x(b)]
be the image of that interval. Then the rule for
substitution becomes∫

D

f(x) dx =

∫
D∗

f(x(u))
dx

du
du.

Actually, this isn’t always valid, since when we
change from intervals to domains, we lose the orien-
tation of the interval. Take, for instance, the inte-

gral

∫ 1

0

−x dx, and apply the substitution x = −u,

dx = −du. With limits on our intervals, we get∫ 1

0

−x dx =

∫ −1

0

−u (−du),

which is correct, since both integrals equal −1
2
.

But, in terms of domains of integration, we have∫
[0,1]

−x dx =

∫
[−1,0]

−u (−du),

which is wrong, because the right integral means∫ 0

u=−1

−u (−du). The problem is that domains are

subsets without orientation. Thus, the correct rule
for substitution when using domains has absolute
values of the derivative:∫

D

f(x) dx =

∫
D∗

f(x(u))

∣∣∣∣dxdu
∣∣∣∣ du,

and that’s the form we’ll be generalizing.
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Linear transformations. Consider a linear
transformation T : R2 → R2. Such a linear trans-
formation can be described by a 2 × 2 matrix A.
We identify ordered pairs as column vectors, so

(x, y) ∈ R2 is identified with

[
x
y

]
, and (u, v) ∈ R2

is identified with

[
u
v

]
. Then the equation

(x, y) = T(u, v) = (au + bv, cu + dv),

becomes the matrix equation

T(u, v) =

[
au + bv
cu + dv

]
=

[
a b
c d

] [
u
v

]
,

so that [
x
y

]
= T(u, v) = A

[
u
v

]
where A is the matrix

[
a b
c d

]
.

Note that the entries of the matrix A which de-
scribes the linear transformation t are actually par-
tial derivatives of T.

A =

∂x∂u ∂x

∂v
∂y

∂u

∂y

∂v

 .

A matrix A sends the unit square (the square
with two sides being the standard unit vectors i
and j) to a parallelogram with two sides being the

columns of A, namely,

[
a
c

]
and

[
b
d

]
. The area

of this parallelogram is | det(A)|, the absolute value
of the determinant of A. More generally, if D∗ is
any region in R2, and D = T(D∗) is its image
under this linear transformation, then the area of
D is | det(A)| times the area of D∗.

Now, let’s look at double integrals. First consider
the case when the integrand is the constant 1. Then∫∫

D
1 dx dy equals the area of D. We can rewrite

the final statement in the last paragraph

Area(D) = | det(A)| Area(D∗),

in terms of integrals as∫∫
D

1 dx dy =

∫∫
D∗

1 | det(A)| du dv.

Change of variables for double integrals. We
have to make two generalizations to make that last
equation into a rule for change of variables in dou-
ble integrals. First, the integrand has to be changed
from the constant 1 to a general scalar-valued func-
tion f . Second, the transformation T has be gener-
alized from a linear transformation to a nonlinear
transformation T.

Let’s replace the constant integrand 1 by a func-
tion f : R2 → R. We’ll simply get

∫∫
D

f(x, y) dx dy =

∫∫
D∗

f(T(u, v))| det(A)| du dv.

Here, T(u, v) = (x(u, v), y(u, v)). Again, we’re
treating x and y as both variables and functions.

The justification for this generalization is that
the solids whose volumes the double integrals de-
scribe are being stretched/squeezed from the (u, v)-
plane to the (x, y)-plane, but their heights, which
are given by f , aren’t being changed at all.

Next, let T be any transformation R2 → R2, not
necessarily a linear transformation. (Although T is
a vector-valued function, and, in fact, it’s a vector
field, we’ll call it a transformation because we’re
treating it in a different way.)

The matrix A of partial derivatives (which is a
constant matrix when T is a linear transformation)
has a determinant which is called the Jacobian of
T and denoted

DT(u, v) =
∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣ .
Although T is not a linear transformation, this Ja-
cobian describes the stretching/squeezing at partic-
ular points, and so the general change of variables
has the same equation.∫∫

D

f(x, y) dx dy =

∫∫
D∗

f(T(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv,
where

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ denotes the absolute value of the

Jacobian.
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Examples of change of variables in double
integrals. Determine the value of∫∫

D

√
x + y

x− 2y
dA

where D is the region in R2 enclosed by the lines
y = x/2, y = 0, and x + y = 1.
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