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Constraints and Lagrange multipliers.
We’ve seen how to find extrema for a function
when we’re looking in an open subset of Rn,
namely, find the critical points, then determine
which give extrema, perhaps by using the second-
derivative test. But what if the extrema occur on
the boundaries of that open subset.

For example, suppose f is defined on the closed
unit disk, that is, when ‖x‖ ≤ 1, and it’s defined by
f(x, y) = 2xy+y2. How do you determine if there’s
an extremum on the boundary? The boundary is
the unit circle, which is defined by ‖x‖ = 1. In
this context, the equation ‖x‖ = 1 is called a con-
straint when we look for extreme values of f(x) for
x which satisfy the equation. Lagrange developed
a technique, now called the method of Lagrange
multipliers, to solve this problem.

The method. First, we’ll see how it works, then
we’ll see why it works. Suppose we want to find the
extreme values of a function f : Rn → R subject
to the constraint g(x) = c, where g is a function
g : Rn → R and c is a constant. Introduce a new
variable λ, and solve the system of equations

∇f(x) = λ∇g(x)

g(x) = c

to get what we call critical points subject to the
constraint. Then determine which of these give the
extreme values of f .

Example 1. Consider the function f(x) = 2xy+y2

subject to the constraint g(x, y) = x2+y2 = 1. The

system mentioned above has these three equations

fx(x, y) = 2y = λgx(x, y) = λ2x

fy(x, y) = 2x+ 2y = λgy(x, y) = λ2y

g(x) = x2 + y2 = c = 1

in the three unknowns x, y, and λ. The first two
equations give

λ =
y

x
=
x+ y

y
=
x

y
+ 1,

and the equation λ = 1
λ

+ 1 has the two solutions

λ1 = 1
2
(1 +
√

5) and λ2 = 1
2
(1−
√

5). These lead to
the four solutions of the system. Two turn out to
be maxima and two minima.

Why it works. Let’s look at the planar case.
Suppose x is a point satisfying g(x, y) = c. The
gradient ∇f(x) points in the direction in R2 in
which f grows fastest, while ∇g(x) is normal to
the curve g(x, y) = c. So, if these directions, ∇f(x)
and ∇g(x), aren’t the same, then f will increase in
one direction along the curve and decrease in the
opposite direction. A sketch helps here. So the
only way an extremum can occur at x is if ∇f(x)
is some multiple, denoted λ here, of ∇g(x).

More than one constraint. A variant of this
method works when there is more than one con-
straint. Suppose that g1(x) = c1 and g2(x) = c2
are two constraints that have to be satisfied. Then
solve the system of equations

∇f(x) = λ1∇g1(x) + λ2∇g2(x)

g1(x) = c1

g2(x) = c2

to find critical points.

Example 2. Consider the function f : R4 → R
defined by f(x) = f(w, x, y, z) = w2x2+y2z2. Find
the extrema on the plane of points in R4 which
satisfy

g1(x) = w + x+ y + z = 2

g2(x) = w + x− y − z = 1
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Since ∇f(x) = (2wx2, 2w2x, 2yz2, 2y2z), ∇g1(x) =
(1, 1, 1, 1), and ∇g2(x) = (1, 1,−1,−1), we have
the system of six equations in six unknowns

2wx2 = λ1 + λ2

2wx = λ1 + λ2

2yz2 = λ1 − λ2
2yz = λ1 − λ2

w + x+ y + z = 2

w + x− y − z = 1

We can eliminate λ1 and λ2 from the first two
equations to get the equations 2wx2 = 2w2x and
2yz2 = 2yz. From the first of these, either w = 0
or x = 0 or w = x. From the second, either y = 0
or z = 0 or z = y. That’s nine combination cases
to consider in all.

Let’s look at just one of them, say w = 0 and
z = y. The last two equations become x + 2y = 2
and x = 1. In this case we get the unique solution
(w, x, y, z) = (0, 1, 3

2
, 3
2
).

The other eight cases will also yield some solu-
tions. Among all these will be a global minimum,
but as f takes arbitrarily large values on this plane,
f won’t have a maximum.
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