Math 131 Multivariate Calculus
 Quiz on Dot and Cross Products

February 2014

Scale. $10-12$ A, 8-9 B, 5-7 C. Median 8.5.

1. $[4 ; 2$ points each part] Name a vector perpendicular to the vectors $\mathbf{a}=(2,0,1)$ and $\mathbf{b}=(0,1,2)$
a. Name a vector that is perpendicular to both \mathbf{a} and \mathbf{b}.

It's the cross product

$$
(2,0,1) \times(0,1,2)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 0 & 1 \\
0 & 1 & 2
\end{array}\right|
$$

which equals $-\mathbf{i}-4 \mathbf{j}+2 \mathbf{k}=(-1,-4,2)$.
b. Consider the parallelogram two of whose sides are \mathbf{a} and \mathbf{b}. The area of this parallelgram is

It's the length of the cross product, namely $\sqrt{1+16+4}=\sqrt{21}$.
2. [8; 2 points each part] Suppose that you are given nonzero vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} in \mathbf{R}^{3}. Use dot and cross products to give expressions for vectors satisfying the following geometric descriptions.
a. A vector orthogonal to \mathbf{a} and \mathbf{b}.

Take the cross product $\mathbf{a} \times \mathbf{b}$.
b. A vector of length 2 orthogonal to \mathbf{a} and \mathbf{b}.

Note the lengths of vectors can be described in terms of dot products, $\|\mathrm{x}\|=\sqrt{\mathbf{x} \cdot \mathbf{x}}$.
Divide that cross product in part \mathbf{a} by it's length, then multiply by $2 . \frac{2}{\|\mathbf{a} \times \mathbf{b}\|} \mathbf{a} \times \mathbf{b}$.
c. The vector projection of \mathbf{b} onto \mathbf{a}.

That's $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}$.
d. A vector with the length of \mathbf{b} in the direction of \mathbf{a}.

Divide \mathbf{a} by its length, then multiply by the length of \mathbf{b} to get $\frac{\|\mathbf{b}\|}{\|\mathbf{a}\|} \mathbf{a}$.

