Name: \qquad

Math 131 Multivariate Calculus
 Quiz

17 Mar 2014
Problem 1. On arclength. The path $\mathbf{x}: \mathbf{R} \rightarrow \mathbf{R}^{2}$ given by

$$
\mathbf{x}(t)=(x(t), y(t))=\left(\cos ^{3} t, \sin ^{3} t\right)
$$

describes an astroid, that is, a star shaped figure. For t in the interval $\left[0, \frac{\pi}{2}\right]$, one fourth of the astroid is described. It is easy to see that

$$
\mathbf{x}^{\prime}=\left(-3 \sin t \cos ^{2} t, 3 \sin ^{2} t \cos t\right)
$$

and

$$
\left\|\mathbf{x}^{\prime}\right\|=3 \sin t \cos t=\frac{3}{2} \sin 2 t .
$$

Using that information, determine the arclength of this one-fourth astroid.

Problem 2. On flow lines. Recall that a flow line for a vector field \mathbf{F} is a path \mathbf{x} such that the velocity along the path is a vector in the vector field, that is, $\mathbf{x}^{\prime}(t)=\mathbf{F}(\mathbf{x}(t))$. Verify that the path $\mathbf{x}(t)=(\sin t, \cos t, 2 t)$ is a flow line for the vector field $\mathbf{F}=y \mathbf{i}-x \mathbf{j}+2 \mathbf{k}=(y,-x, 2)$.

Problem 3. On divergence and curl of vector fields.
a. Give an example of a vector field with a nonzero divergence, and compute its divergence.
b. Give an example of a vector field with a nonzero curl, and compute its curl.

