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The area differential of a surface, and a double integral for the area of the surface.
Recall that we’re using X(s, t) to describe a paramaterization of a surface S in 3-space. Also
we have the tangent vectors Ts and Tt at each point in the surface defined by

Ts = Xs =

(
∂x

∂s
,
∂y

∂s
,
∂z

∂s

)
and Tt = Xt =

(
∂x

∂t
,
∂y

∂t
,
∂z

∂t

)
and the normal vector N defined in terms of them N = Ts ×Tt.

We can use Ts, Tt, and N to define a surface area differential dS of a surface S.
Let S be a surface parameterized by X : D → R3. A point (s0, t0) ∈ D, is mapped

to X(s0, t0) ∈ R3. An infinitesimal dx × dt parallelogram at (s0, t0) ∈ D has area dx dt.
It’s mapped to an infinitesimal Ts(s0, t0)ds×Tt(s0, t0) rectangle with area ‖Ts ×Tt‖ ds dt,
which equals ‖N‖ ds dt. We’ll call this infinitesimal parallelogram the surface area differential,
denoted dS. Thus,

dS = ‖N‖ ds dt = ‖Ts ×Tt‖ ds dt,
By summing these surface area differentials dS over the whole surface, we’ll get the area

of the surface

Area of S =

∫∫
D

dS,

where D is the domain of the parametrization X describing the surface.
We can find N, the normal vector, in terms of the components of X as follows.

N = Ts ×Tt =

∣∣∣∣∣∣
i j k
∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

∣∣∣∣∣∣
=

(
∂y

∂s

∂z

∂t
− ∂y
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where the last line uses the same notation that we used for Jacobians. Therefore,

‖N‖ =

√(
∂(y, z)

∂(s, t)

)2

+

(
∂(x, z)

∂(s, t)

)2

+

(
∂(x, y)

∂(s, t)

)2

.

That gives us a more detailed expression for the surface area differential

dS =

√(
∂(y, z)

∂(s, t)

)2

+

(
∂(x, z)

∂(s, t)

)2

+

(
∂(x, y)

∂(s, t)

)2

ds dt.
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Graphs z = f(x, y) of functions of two variables. One of the most common applications
of surfaces in R3 is as graphs z = f(x, y) of functions of two variables. These can easily be
paramaterized by identifying s with x and t with y. Then z = f(x, y). That is, X(s, t) =
(s, t, f(s, t)). Then

Ts =

(
∂x

∂s
,
∂y

∂s
,
∂z

∂s

)
=

(
1, 0,

∂f

∂s

)
and Tt =

(
∂x

∂t
,
∂y

∂t
,
∂z

∂t

)
=

(
0, 1,

∂f

∂t

)
.

Therefore,

N = Ts ×Tt =

(
−∂f

∂s
,−∂f

∂t
, 1

)
,

which we can also write in terms of x and y as

N = (−fx,−fy, 1).

So, in this case, the surface area differential is

dS = ‖N‖ ds dt = ‖N‖ dx dy =
√

f 2
x + f 2

y + 1 dx dy,

and an integral giving the surface area of the surface z = f(x, y) over the domain D of f is

Area =

∫∫
D

dS =

∫∫
D

√
f 2
x + f 2

y + 1 dx dy.

Scalar surface integrals. Now that we have the surface differential dS, we can use it for
more than just the area of the surface. The area is the integral of 1:

Area =

∫∫
D

1 dS.

We can replace 1 by a function f(x, y, z) to integrate f .
Here, f(x, y, z) is a scalar-valued function R3 → R whose domain includes the surface

S. We can think of f(x, y, z) being the weight, or density, at (x, y, z) on the surface. If f is
constantly 1, then every point weighs the same, and the surface integral

∫∫
D
f dS just gives

the area of S. But when f isn’t constantly 1, then different points carry different weights.
Thus, we make our definition of scalar surface integrals.

Definition 1. Let S be a surface in R3 parametrized by X : D → R3 where the domain D
of the parameterization is a bounded set in R2 and the parametrization X is smooth (that
is, C1). We define the scalar surface integral of f as∫∫

X

f dS =

∫∫
D

f(X(s, t)) ‖N(s, t)‖ ds dt

=

∫∫
D

f(X(s, t)) ‖Ts ×Tt‖ ds dt

=

∫∫
D

f(X(s, t))

√(
∂(y, z)

∂(s, t)

)2

+

(
∂(x, z)

∂(s, t)

)2

+

(
∂(x, y)

∂(s, t)

)2

ds dt.

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/

2

http://math.clarku.edu/~djoyce/ma131/
http://math.clarku.edu/~djoyce/ma131/

