## Surface integrals <br> Math 131 Multivariate Calculus

D Joyce, Spring 2014
The area differential of a surface, and a double integral for the area of the surface. Recall that we're using $\mathbf{X}(s, t)$ to describe a paramaterization of a surface $S$ in 3 -space. Also we have the tangent vectors $\mathbf{T}_{s}$ and $\mathbf{T}_{t}$ at each point in the surface defined by

$$
\mathbf{T}_{s}=\mathbf{X}_{s}=\left(\frac{\partial x}{\partial s}, \frac{\partial y}{\partial s}, \frac{\partial z}{\partial s}\right) \quad \text { and } \quad \mathbf{T}_{t}=\mathbf{X}_{t}=\left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial z}{\partial t}\right)
$$

and the normal vector $\mathbf{N}$ defined in terms of them $\mathbf{N}=\mathbf{T}_{s} \times \mathbf{T}_{t}$.
We can use $\mathbf{T}_{s}, \mathbf{T}_{t}$, and $\mathbf{N}$ to define a surface area differential $d S$ of a surface $S$.
Let $S$ be a surface parameterized by $\mathbf{X}: D \rightarrow \mathbf{R}^{3}$. A point $\left(s_{0}, t_{0}\right) \in D$, is mapped to $\mathbf{X}\left(s_{0}, t_{0}\right) \in \mathbf{R}^{3}$. An infinitesimal $d x \times d t$ parallelogram at $\left(s_{0}, t_{0}\right) \in D$ has area $d x d t$. It's mapped to an infinitesimal $\mathbf{T}_{s}\left(s_{0}, t_{0}\right) d s \times \mathbf{T}_{t}\left(s_{0}, t_{0}\right)$ rectangle with area $\left\|\mathbf{T}_{s} \times \mathbf{T}_{t}\right\| d s d t$, which equals $\|\mathbf{N}\| d s d t$. We'll call this infinitesimal parallelogram the surface area differential, denoted $d S$. Thus,

$$
d S=\|\mathbf{N}\| d s d t=\left\|\mathbf{T}_{s} \times \mathbf{T}_{t}\right\| d s d t
$$

By summing these surface area differentials $d S$ over the whole surface, we'll get the area of the surface

$$
\text { Area of } S=\iint_{D} d S
$$

where $D$ is the domain of the parametrization $\mathbf{X}$ describing the surface.
We can find $\mathbf{N}$, the normal vector, in terms of the components of $\mathbf{X}$ as follows.

$$
\begin{aligned}
\mathbf{N} & =\mathbf{T}_{s} \times \mathbf{T}_{t}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} & \frac{\partial z}{\partial s} \\
\frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} & \frac{\partial z}{\partial t}
\end{array}\right| \\
& =\left(\frac{\partial y}{\partial s} \frac{\partial z}{\partial t}-\frac{\partial y}{\partial t} \frac{\partial z}{\partial s}\right) \mathbf{i}-\left(\frac{\partial x}{\partial s} \frac{\partial z}{\partial t}-\frac{\partial x}{\partial t} \frac{\partial z}{\partial s}\right) \mathbf{j}-\left(\frac{\partial x}{\partial s} \frac{\partial y}{\partial t}-\frac{\partial x}{\partial t} \frac{\partial y}{\partial s}\right) \mathbf{k} \\
& =\frac{\partial(y, z)}{\partial(s, t)} \mathbf{i}-\frac{\partial(x, z)}{\partial(s, t)} \mathbf{j}+\frac{\partial(x, y)}{\partial(s, t)} \mathbf{k}
\end{aligned}
$$

where the last line uses the same notation that we used for Jacobians. Therefore,

$$
\|\mathbf{N}\|=\sqrt{\left(\frac{\partial(y, z)}{\partial(s, t)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(s, t)}\right)^{2}+\left(\frac{\partial(x, y)}{\partial(s, t)}\right)^{2}} .
$$

That gives us a more detailed expression for the surface area differential

$$
d S=\sqrt{\left(\frac{\partial(y, z)}{\partial(s, t)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(s, t)}\right)^{2}+\left(\frac{\partial(x, y)}{\partial(s, t)}\right)^{2}} d s d t
$$

Graphs $z=f(x, y)$ of functions of two variables. One of the most common applications of surfaces in $\mathbf{R}^{3}$ is as graphs $z=f(x, y)$ of functions of two variables. These can easily be paramaterized by identifying $s$ with $x$ and $t$ with $y$. Then $z=f(x, y)$. That is, $\mathbf{X}(s, t)=$ $(s, t, f(s, t))$. Then

$$
\mathbf{T}_{s}=\left(\frac{\partial x}{\partial s}, \frac{\partial y}{\partial s}, \frac{\partial z}{\partial s}\right)=\left(1,0, \frac{\partial f}{\partial s}\right) \quad \text { and } \quad \mathbf{T}_{t}=\left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial z}{\partial t}\right)=\left(0,1, \frac{\partial f}{\partial t}\right) .
$$

Therefore,

$$
\mathbf{N}=\mathbf{T}_{s} \times \mathbf{T}_{t}=\left(-\frac{\partial f}{\partial s},-\frac{\partial f}{\partial t}, 1\right)
$$

which we can also write in terms of $x$ and $y$ as

$$
\mathbf{N}=\left(-f_{x},-f_{y}, 1\right)
$$

So, in this case, the surface area differential is

$$
d S=\|\mathbf{N}\| d s d t=\|\mathbf{N}\| d x d y=\sqrt{f_{x}^{2}+f_{y}^{2}+1} d x d y
$$

and an integral giving the surface area of the surface $z=f(x, y)$ over the domain $D$ of $f$ is

$$
\text { Area }=\iint_{D} d S=\iint_{D} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d x d y
$$

Scalar surface integrals. Now that we have the surface differential $d S$, we can use it for more than just the area of the surface. The area is the integral of 1 :

$$
\text { Area }=\iint_{D} 1 d S
$$

We can replace 1 by a function $f(x, y, z)$ to integrate $f$.
Here, $f(x, y, z)$ is a scalar-valued function $\mathbf{R}^{3} \rightarrow \mathbf{R}$ whose domain includes the surface $S$. We can think of $f(x, y, z)$ being the weight, or density, at $(x, y, z)$ on the surface. If $f$ is constantly 1 , then every point weighs the same, and the surface integral $\iint_{D} f d S$ just gives the area of $S$. But when $f$ isn't constantly 1 , then different points carry different weights. Thus, we make our definition of scalar surface integrals.

Definition 1. Let $S$ be a surface in $\mathbf{R}^{3}$ parametrized by $\mathbf{X}: D \rightarrow \mathbf{R}^{3}$ where the domain $D$ of the parameterization is a bounded set in $\mathbf{R}^{2}$ and the parametrization $\mathbf{X}$ is smooth (that is, $C^{1}$ ). We define the scalar surface integral of $f$ as

$$
\begin{aligned}
\iint_{\mathbf{X}} f d S & =\iint_{D} f(\mathbf{X}(s, t))\|N(s, t)\| d s d t \\
& =\iint_{D} f(\mathbf{X}(s, t))\left\|\mathbf{T}_{s} \times \mathbf{T}_{t}\right\| d s d t \\
& =\iint_{D} f(\mathbf{X}(s, t)) \sqrt{\left(\frac{\partial(y, z)}{\partial(s, t)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(s, t)}\right)^{2}+\left(\frac{\partial(x, y)}{\partial(s, t)}\right)^{2}} d s d t .
\end{aligned}
$$

Math 131 Home Page at http://math.clarku.edu/~djoyce/ma131/

