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Summary of the surface differentials, surface ar-
eas, and scalar surface integrals that we already
discussed.

The surface differential dS can be written in
terms of of the normal vector N, or the tangent
vectors Ts and Tt, or Jacobians as

dS = ‖N‖ ds dt
= ‖Ts ×Tt‖ ds dt

=
√(∂(y,z)

∂(s,t)

)2
+
(∂(x,z)
∂(s,t)

)2
+
(∂(x,y)
∂(s,t)

)2
ds dt

Any of these expressions of dS can be used to find
the total area of the surface, which is the dou-

ble integral

∫∫
D

dS, where D is the domain of the

parametrization X describing the surface.
The scalar surface integral for the scalar field f

is just the double integral

∫∫
D

f dS.

New topics. The definition of vector surface
integrals, some examples, and the statement of
Stokes’ theorem.

Vector surface integrals. Vector surface inte-
grals are defined similarly to scalar surface inte-
grals. Whereas scalar surface integrals are de-
fined in terms of the scalar differential dS, which
is ‖N‖ ds dt in terms of dS, vector surface inte-
grals are defined in terms of the vector differential
dS = N ds dt.

Precisely, if F is a vector field in R3, then the
vector surface integral is defined as∫∫

X

F · dS =

∫∫
D

F(X(s, t)) ·N(s, t) ds dt.

The normal vector N doesn’t have to be a unit
normal vector. We can make it a unit vector by
dividing it by its length. Let n denote the unit
normal vector.

n(s, t) =
N(s, t)

‖N(s, t)‖

Then N = ‖N‖n, so we can rewrite the vector
surface integral as

∫∫
X

F · dS =

∫∫
D

F(X) ·N ds dt

=

∫∫
D

(F(X) · n) ‖N‖ ds dt

=

∫∫
D

(F · n) dS

In other words, the vector differential dS is the
product of the unit normal vector n and the scalar
differential dS.

Example 1. Exercise 2 in section 7.2 has both a
scalar surface integral and a vector surface integral.
The surface is the same for both.

Let D be the quarter disk

D = {(s, t)|s2 + t2 ≤ 1, s ≥ 0, t ≥ 0},

and let the surface parametrization X : D → R3

be defined by

X(s, t) = (s+ t, s− t, st).

The surface looks like it’s a quarter disk in the
xy-plane, but lifted up somewhat in the z-direction.
One edge is on the line y = x in the xy-plane,
another on the line y = −x.
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For either a scalar surface integral or a vector
surface integral, we’ll need to calculate the normal
vector N. Let’s use the expression for N in terms
of Jacobians this time.

N =
∂(y, z)

∂(s, t)
i− ∂(x, z)

∂(s, t)
j +

∂(x, y)

∂(s, t)
k

∂(y, z)

∂(s, t)
=

∂y

∂s

∂z

∂t
− ∂y

∂t

∂z

∂s
= 1s− (−1)t = s+ t

∂(x, z)

∂(s, t)
=

∂x

∂s

∂z

∂t
− ∂x

∂t

∂z

∂s
= 1s− 1t = s− t

∂(x, y)

∂(s, t)
=

∂x

∂s

∂y

∂t
− ∂x

∂t

∂y

∂s
= 1(−1)− 1(1) = −2

Therefore, N = (s+ t, t− s,−2). The length of N
is

‖N‖ =
√

(s+ t)2 + (t− s)2 + 4 =
√

2s2 + 2t2 + 4.

First, let’s evaluate the scalar surface integral∫∫
X

f dS, where f(x, y, z) = 4. Polar coordinates

help here, and later the substitution, u = r2 + 2,

du = 2r dr, helps.∫∫
X

4 dS

=

∫∫
D

4 ‖N(s, t)‖ ds dt

=

∫∫
D

4
√

2s2 + 2t2 + 4 ds dt

= 4
√

2

∫∫
D

√
s2 + t2 + 2 ds dt

= 4
√

2

∫ π/2

0

∫ 1

0

√
r2 + 2 r dr dθ

= 2
√

2

∫ π/2

0

∫ 3

2

√
u du dθ

= 2
√

2

∫ π/2

0

2
3
(33/2 − 23/2) dθ

= 2
3
π
√

2 (33/2 − 23/2)

Next, let’s evaluate the vector surface integral∫∫
X

F · dS, where F = xi + yj + zk.

The definition for vector surface integrals says∫∫
X

F · dS =

∫∫
D

F(X) ·N ds dt.

We already have N. So

F(X) ·N = (x, y, z) · (s+ t, t− s,−2)

= (s+ t, s− t, st) · (s+ t, t− s,−2)

= s2 + 2st+ t2 − s2 + 2st− t2 − 2st

= 2st.

Therefore, the vector surface integral equals∫∫
D

2st ds dt,

which, in polar coordinates, equals∫ π/2

0

∫ 1

0

2r2 sin θ cos θ r dr dθ

=

(∫ 1

0

r2r dr

)(∫ π/2

0

2 sin θ cos θ dθ

)

=

(
1
4
r4
∣∣∣1
0

)(
sinθ

∣∣∣π/2
0

)
= 1

4

2



Vector surface integrals as flux. One nice
physical interpretation of the vector surface inte-
gral

∫∫
X

F · dS is as a measure of the flow of a fluid
across the surface S. Suppose a fluid is moving in
space, and F(x, y, z) is the velocity of that fluid at
the point (x, y, z). The dot product F · n, where
n is the outward unit normal vector to the surface
S, gives the component of the velocity of the fluid
going out through the surface S. So, if F is perpen-
dicular to n, then there is no fluid going through
the surface, but if F is in the same direction as n,
then the fluid is going through the surface at ve-
locity F. The vector surface integral sums all the
velocities (some can be negative indicating inward
flow, some positive indicating outward flow) to give
the total velocity through the entire surface S. This
is called the flux of F across S.

The statement of Stokes’ theorem. Let a sur-
face S in space have a boundary ∂S. This bound-
ary may have one component, but it may have more
than one. All the boundaries have to be oriented
in the same way. Let F be a vector field in R3.
Stokes’ theorem equates a surface integral to a line
integral. It says that the curl of F integrated over
the surface S equals the vector field F integrated
over the boundary ∂S.∫∫

S

∇× F · dS =

∮
∂S

F · ds

In the special case when the surface S lies in
the (x, y)-plane, we’ve already seen this is a conse-
quence of Green’s theorem. The general statement
of Stokes’ theorem allows the surface S to be in
space.

Example 2 (Stokes’ theorem). Let S be the sur-
face parametrized by

X(s, t) = (s cos t, s sin t, t)

for 0 ≤ s ≤ 1 and 0 ≤ t ≤ π/2, and let F be the
vector field

F(x, y, z) = (z, x, y).

We’ll verify Stokes’ theorem.

You probably recognize the surface S as a 1
4
-turn

of a helicoid where the angle t varies from 0 to 90
degrees.

Let’s evaluate the surface integral
∫∫

S
∇×F · dS

first. We’ll need the normal vector N.

N(s, t) =

∣∣∣∣∣∣
i j k
∂x
∂s

∂y
∂s

∂z
∂s

∂x
∂t

∂y
∂t

∂z
∂t

∣∣∣∣∣∣
=

∣∣∣∣∣∣
i j k

cos t sin t 0
−s sin t s cos t 1

∣∣∣∣∣∣
= (sin t,− cos t, s)

We’ll also need the curl of F.

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

z x y

∣∣∣∣∣∣
= (1, 1, 1)
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Then ∫∫
S

∇× F · dS

=

∫∫
D

∇× F ·N ds dt

=

∫∫
D

(1, 1, 1) · (sin t,− cos t, s) ds dt

=

∫ π/2

0

∫ 1

0

(sin t− cos t+ s) ds dt

=

∫ π/2

0

(sin t− cos t+ 1
2
) dt =

π

4

Now let’s evaluate the line integral
∮
∂S

F·ds. The
boundary ∂S comes in four parts. First, the line
segment from the origin to (1, 0, 0) which we can
parametrize by x1(t) = (t, 0, 0) for 0 ≤ t ≤ 1.
Second, x2: when s = 1, the helix (cos t, sin t, t)
for 0 ≤ t ≤ π/2. Third, the line segment from
(0, 1, pi/2) back to the z-axis at (0, 0, π/2), which
we can parametrize by x3(t) = (0, 1− t, π/2). And
fourth, the line segment from (0, 0, π/2 back to
the origin, which we can parametrize by x4(t) =
(0, 0, π/2− t) for 0 ≤ t ≤ π/2.

We’ll evaluate the integrand over each of the four
parts of the boundary, then add the resulting values
to get the integral over all of ∂S.∫

x1

F · ds =

∫
x1

F(x1(t)) · x′
1(t) dt

=

∫ 1

0

(0, t, 0) · (1, 0, 0) dt

=

∫ 1

0

0 dt = 0

∫
x2

F · ds =

∫
x2

F(x1(t)) · x′
2(t) dt

=

∫ π/2

0

(t, cos t, sin t) · (− sin t, cos t, 1) dt

=

∫ π/2

0

(−t sin t+ cos2 t+ sin t) dt

= π/4

∫
x3

F · ds =

∫
x3

F(x3(t)) · x′
3(t) dt

=

∫ 1

0

(π/2, 0, 1− t) · (0,−1, 0) dt

=

∫ 1

0

0 dt = 0

∫
x4

F · ds =

∫
x4

F(x4(t)) · x′
4(t) dt

=

∫ 1

0

(π/2− t, 0, 0) · (0, 0,−1) dt

=

∫ 1

0

0 dt = 0

Thus,
∫∫

S
∇ × F · dS = π/4, and Stokes’ theorem

is verified.

Math 131 Home Page at
http://math.clarku.edu/~djoyce/ma131/
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