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Today we’ll look at the formal definition of a con-
tinuous random variable and define its density func-
tion.

The cumulative distribution function. Every
real random variable X has a cumulative distribu-
tion function FX : R→ [0, 1] defined as

FX(b) = P (X ≤ b).

Recall that if you know the c.d.f, then you can ex-
press the probability P (a ≤ X ≤ b) in terms of it
as

P (a ≤ X ≤ b) = F (b)− F (a).

In the case of a discrete random variable, F is
constant except at countable many points where
there are jumps. The jumps occur at numbers b
where the probability is positive, and the size of
the jumps are the values of the probability mass
function p(b), that is, the difference between F (b)
and the limit as x approaches b from the left of
F (x).

p(b) = P (X=b)

= P (x ≤ b)− P (x < b)

= FX(b)− lim
x→b+

FX(x)

In the case of a continuous random variable, F
has no jumps; it’s continuous.

Definition of continuous random variables
and their probability density functions. A
continuous random variable is slightly more restric-
tive than just having a continuous p.d.f. We require

that F be the integral of a function f called the
probability density function.

F (b) =

∫ b

−∞
f(x) dx.

Such functions are called absolutely continuous
functions. It follows that probabilities for X on
intervals are the integrals of the density function:

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx.

By the Fundamental Theorem of Calculus, wher-
ever F has a derivative, which it will almost every-
where, it will equal f . Typically F will be differ-
entiable everywhere or perhaps everywhere except
one or two points.

About the graphs of f and F . The cu-
mulative distribution function F is an increasing
function—perhaps it would be better to call it a
nondecreasing function—since probability is accu-
mulated as x increases. Indeed, as x → ∞, F ap-
proaches 1. Also, as x → −∞, F approaches 0.
Thus, the graph y = F (x) is asymptotic on the left
to y = 0 while it’s asymptotic on the right to y = 1.
In between F is increasing.

The probability density function f is a nonneg-
ative function. Since it’s the derivative of F , f(x)
is large when F is increasing rapidly, small when
F is increasing slowly, and 0 on intervals where
F is constant. The total area under the curve
y = f(x) is 1. That’s equivalent to the statement
that limx→∞ F (x) = 1. Both statements are true
because the probability of an entire sample space S
is 1.

A dart game example. For our first example,
consider a dart game in which a dart is thrown at
a circular target of radius 1. We assume it will be
thrown uniformly randomly so that the probability
that any particular region is hit is proportional to
its area. We then record the distance X from the
dart to the center of the target. We’ll determine the
cumulative distribution F for X, then differentiate
it to get the density function f .
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The distance from the thrown dart to the center
of the target has to be between 0 and 1, so we know
X ∈ [0, 1]. By definition F (x) = P (X ≤ x), that
is, the dart lands within x units of the center. The
region of the unit circle for which X ≤ x is a circle
of radius x. It has area πx2. Since we’re assuming
uniform continuous probability on the unit circle,
therefore, we can find P (X ≤ x) by dividing the
area πx2 of that circle by the total area π of the
unit circle. Therefore, for 0 ≤ x ≤ 1,

F (x) = P (X ≤ x) = x2.

For x < 0, F (x) = 0, and for x > 1, F (x) = 1.

To find the density function f , all we have to do
is differentiate F . Then for 0 ≤ x ≤ 1, f(x) =
F ′(x) = 2x. Outside the interval [0, 1], f is 0.

Another example, one with unbounded den-
sity. When we discussed the axioms of probabil-
ity, we looked at the probability density function
and the c.d.f. for uniform probabilities on inter-
vals.

Now let Y be the square of a uniform distribution
on [0, 1]. In other words, let X have a uniform dis-
tribution on [0, 1], so that fX(x) = 1 and FX(x) = x
for x ∈ [0, 1]. Then let Y = X2. Now to figure out
what FY (y) and fY (y) are. We’ll start with FY .

By the definition of FY , we have FY (y) = P (Y ≤
y) = P (X2 ≤ y). If y is negative of 0, then P (X2 ≤
y) = 0, so FY (y) = 0.

Now suppose 0 < y < 1. Then P (X2 ≤ y) =
P (0 ≤ X ≤ √y), which, since X is uniform, is
equal to the length of the interval,

√
y.

Finally, if 1 ≤ y, then FY (y) = 1. Thus we have
this formula for FY

FY (y) =


0 if y ≤ 0√
y if 0 ≤ y ≤ 1
1 if 1 ≤ y

We can differentiate FY to get the density func-
tion fY . Since FY is constant on the intervals
(−∞, 0) and (1,∞), therefore fY will be 0 on those
intervals. On the interval [0, 1] the derivative of
FY (y) is 1/

√
y. Therefore, fy is given by the for-

mula

fY (y) =
1
√
y

on [0, 1].

Usually the intervals where a probability density
function is 0 aren’t mentioned.

When I graph a density function, I usually shade in
the region below the curve as a reminder that it’s
the area below the curve that’s important. Notice
that this density function approaches infinity at 0.
In other words, its integral is improper, but the
area under the curve is still 1.

For our next example, we’ll let Z be the sum
of two independent uniform distributions on [0, 1].
That means X and Y are both uniform on [0, 1] so
that (X, Y ) is uniform on the unit square [0, 1] ×
[0, 1]. In other words, the point (X, Y ) is a uni-
formly randomly chosen point in the unit square.
Then let Z be the sum of these two numbers,
Z = X + Y . Of course, Z is some number be-
tween 0 and 2. We’ll figure out what FZ(z) and
fZ(z) are.
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Functions of random variables. Frequently,
one random variable Y is a function φ of another
random variable X, that is, Y = φ(X). Given
the cumulative distribution function FX(x) and the
probability density function fX(x) for X, and we
want to determine the cumulative distribution func-
tion FY (y) and the probability density function
fY (y) for Y . How do we find them?

Let’s illustrate this with an example. Suppose
X is a uniform distribution on [0, 10] and Y =
φ(X) = X2. The probability density function for
X is fX(x) = 1

10
for x ∈ [0, 10], and the cumulative

distribution function for X is

FX(x) =


0 for x < 0,

x/10 for 0 ≤ x ≤ 10,
1 for x > 10

Can we find FY (y)? Well,

FY (y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (X ≤ √y)

= FX(
√
y).

Thus,

FY (y) =


0 for y < 0,√
y/10 for 0 ≤ y ≤ 100,
1 for y > 100

In general, if φ is an increasing function on the
domain of FX , then we can do the same thing. It
will be the case that

FY (y) = FX(φ−1(y))

where φ−1 is the function inverse to φ. So, it’s
pretty easy to find the cumulative distribution func-
tion for Y from that for X.

Of course, we can find the probability density
function fY (y) by differentiating FY (y). In our ex-
ample we find

fY (y) =
1

20
√
y

for y ∈ [0, 100].

Can we find fY directly from fX instead of going
through the cumulative distribution function? Yes,
at least when φ is an increasing function. We’ve
seen that FY (y) = FX(φ−1(y)). Differentiate both
sides of that equation with respect to y, using the
chain rule on the way. You get

F ′Y (y) = F ′X(φ−1(y))
d

dy
φ−1(y).

Therefore,

fY (y) = fX(φ−1(y))
d

dy
φ−1(y).

How does that work in our example where y =
φ(x) = x2? The inverse function is φ−1(y) =

√
y,

so
d

dy
φ−1(y) =

1

2
√
y

. Therefore,

fY (y) = fX(φ−1(y))
d

dy
φ−1(y)

=
1

10

1

2
√
y

=
1

20
√
y

for 0 ≤ y ≤ 100.

The Cauchy distribution. This distribution
isn’t as important as some of the others we’ve
looked at, but it does allow us to use the results
we just found. Also, it is a very unusual distribu-
tion that we’ll use later for theoretical purposes.

Imagine a spinner located at the origin of R2.
Draw the vertical line x = 1 and look at where on
that line the spinner is pointing. Ignore the half of
the time the spinner points to the left, and just use
the times it points to the right. In other words, the
spinner uniformly selects an angle X between −π

2

and π
2
. Let Y be the coordinate on the line x = 1

where the spinner points. Then Y = tan(X). The
distribution for Y is called the Cauchy distribution.

Let’s determine the density for Y . First, note
that the density for X is fX(x) = 1

π
for x ∈ (−π

2
, π
2
).

The density for Y is fY (y) = fX(φ−1(y)) d
dy
φ−1(y),

where φ(x) = tanx. So φ−1(y) = arctan y, and
that has the derivative

d

dy
arctan y =

1

1 + y2
.
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Therefore,

fY (y) =
1

π

1

1 + y2
.

The graph of fY is a very wide bell-shaped curve.
The cumulative density function for the Cauchy dis-
tribution is

FY (y) =
1

π
arctan y.

In the figure below, the graph of the standard
normal density function is green and that of the
Cauchy density function is red.

What makes a Cauchy random variable so in-
teresting is that the values that it takes on swing
so wildly. It takes on values very far from 0 of-
ten enough so that the Cauchy distribution has no
mean, no variance or standard deviation, doesn’t
satisfy the law of large numbers, and doesn’t sat-
isfy the conclusion of the central limit theorem.
When we look at those concepts, we’ll show how
they don’t work for the Cauchy distribution.

Math 217 Home Page
at http://math.clarku.edu/~djoyce/ma217/
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