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The data. We start with n observations xi∗,
i = 1, . . . , n. Each observation consists of k com-
ponents xi∗ = (xi1, . . . , xik), so altogether we have
n points in Rk, the data space.

For example, you might ask n = 100 people k =
10 questions, and each question can be answered
on some linear scale (like from 1 to 5). That gives
you 100 points in R10. The n = 100 people may be
stratified (i.e., classified) in one or more ways. If
they’re college students, they might be stratified by
class year: freshman, sophomore, junior, or senior,
and you may be interested in how their responses
vary by class year.

This information can be collected in one n × k
matrix X whose ijth entry is the jth component
of the ith observation. Each of the n rows is one
of the observations xi∗. (Some authors reverse the
orientation of the matrix.)

The jth column in this matrix gives the jth

data components for all n observations, x∗j =
(x1j, . . . , xnj). If you like, you can standardize the
data in each of these data components. You could
subtract the sample average,

xj =
1

n

n∑
i=1

xij,

of the n jth components from each xij. Making the
mean 0 simplifies later computations.

The data component x∗j also has a sample vari-
ance

s2j =
1

n− 1

n∑
i=1

(xij − xj).

If you divide x∗j by the sample standard deviation
sj, then the standardized data for each of the k

coordinates has standard deviation 1. By making
the standard deviation 1, it makes each of the coor-
dinates equally important, however you may want
to treat some data components as more important
than others.

Principal component analysis (PCA). This
analysis will find an orthogonal coordinate system
in Rk so that the first coordinate, the first principal
component, accounts for much of the variation in
the data, the second accounts for less variation, and
so on. Usually two or three principal components
account for most of the variation, the remaining
ones a smaller amount. Choosing just the first two
principal components, you can display the data on
a planar graph, while three gives a display on a
spacial graph.

You can then use your stratifications to visu-
ally tell if there’s any difference among the strata.
Color code the dots on your graph according to the
strata—one color for freshman, one for sophomores,
etc.

The covariance matrix. The mathematics in-
volves some linear algebra using the covariance ma-
trix. It has various other names including variance-
covariance matrix.

The sample covariance matrix S is defined as the
k × k matrix whose jth diagonal entry Sjj is the
sample variance

s2j =
1

n− 1

n∑
i=1

(xij − xj)
2

of the jth data component, while the off-diagonal
entry sj1j2 is sample covariance

sj1j2 =
1

n− 1

n∑
i=1

(xij1 − xj1)(xij2 − xj2)

between the jst1 and the jnd2 data components.

If the components have been standardized by
subtracting their means, there’s an easier way to
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define S using matrix multiplication. Namely, S
can be defined as the product

S =
1

n− 1
XTX

where XT denotes the transpose of the matrix X.
However you define it, S is a symmetric ma-

trix. Symmetric matrices are all diagonalizable and
they have real eigenvalues. Furthermore, XTX is a
positive semidefinite matrix. That means that the
eigenvalues of a matrix XTX are all nonnegative.
We’ll denote the eigenvalues in decreasing order

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

Finally, the eigenspaces corresponding to these
eigenvalues are all orthogonal.

The principal components. The λ1-eigenspace
is called the first principal component, the λ2-
eigenspace is called the second principal compo-
nent, etc. When the data points are given these
component coordinates, since the eigenspaces are
orthogonal, they’ll be independent.

The eigenvalues themselves indicate how much of
the variance in the data comes from variance in the
corresponding principal component.

Geometric interpretation. The first principal
component is a line in Rk. Of all the lines through
the origin, it’s the one spreads the data out most
when you project the data on to it.

If you then subtract from each data point its pro-
jection on to this line (the first eigenspace), the re-
sult will be a point on the k−1-dimensional hyper-
plane perpendicular to the line. The original point
has been projected onto that hyperplane.

Now, if you take that reduced data as a start-
ing point and find its principal component, you’re
actually finding the second principal component of
the original data. You’ll find the line in that hyper-
plane that spreads out the reduced data the most
when the reduced data is projected on it.

Again, you can subtract from each reduced data
point its projection onto this second eigenspace,

you’ll get a point in a k − 2-dimensional subspace.
And so forth. Each stage you’re squeezing more
information out of the original data.

Dimension reduction. The different k principal
components account for different amounts of vari-
ance in the data, each dimension less than the pre-
vious. Ignoring the last few dimensions won’t lose
a lot of information. The first two or three will con-
tain a lot of it. You can display the data in those
two or three dimensions to get an intuition for the
data, perhaps enough to answer your questions or
spur you into asking different questions.

Math 218 Home Page at
http://math.clarku.edu/~djoyce/ma218/
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