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5 The Poisson process

A Poisson process is the continuous version of a
Bernoulli process. In a Bernoulli process, time is
discrete, and at each time unit there is a certain
probability p that success occurs, the same proba-
bility at any given time, and the events at one time
instant are independent of the events at other time
instants.

In a Poisson process, time is continuous, and
there is a certain rate λ of events occurring per
unit time that is the same for any time interval, and
events occur independently of each other. Whereas
in a Bernoulli process at most one event occurs in
a unit time interval, in a Poisson process any non-
negative whole number of events can occur in unit
time.

As in a Bernoulli process, you can ask various
questions about a Poisson process, and the an-
swers will have various distributions. If you ask
how many events occur in an interval of length t,
then the answer will have a Poisson distribution,
Poisson(λt). Its probability mass function is

f(x) =
1

x!
(λt)xe−λt for x = 0, 1, . . . .

If you ask how long until the first event occurs,
then the answer will have an exponential distri-
bution, Exponential(λ), with probability density
function

f(x) = λe−λx for x ∈ [0,∞).

If you ask how long until the rth event,
then the answer will have a gamma distribution

Gamma(λ, r). There are a couple different ways
that gamma distributions are parametrized—either
in terms of λ and r as done here, or in terms of α
and β. The connection is α = r, and β = 1/λ,
which is the expected time to the first event in a
Poisson process. The probability density function
for a gamma distribution is

f(x) =
xα−1e−x/β

βαΓ(α)
=
λrxr−1e−λx

Γ(r)

for x ∈ [0,∞). The mean of a gamma distribution
is αβ = r/λ while its variance is αβ2 = r/λ2.

Our job is to get information about this param-
eter λ. Using the Bayesian approach, we have a
prior density function f(λ) on λ. Suppose over a
time interval of length t we observe k events. The
posterior density function is proportional to a con-
ditional probability times the prior density function

f(λ | k) ∝ P (k |λ) f(λ).

Now, k and t are constants, so

P (k |λ) = P (k successes in time t |λ)

=
1

k!
(λt)ke−λt

∝ λke−λt

Therefore, we have the following proportionality re-
lating the posterior density function to the prior
density function

f(λ | k) ∝ λke−λt f(λ).

Finding a family of conjugate priors. Again,
we have the problem of deciding on what the prior
density functions f(λ) should be. Let’s take one
that seems to be natural and see what family of
distributions it leads to. We know λ is some pos-
itive value, so we need a distribution on (0,∞).
The exponential distributions are common distri-
butions defined on (0,∞), so let’s take the simplest
one, with density

f(λ) = e−λ
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for λ ≥ 0. Then

f(λ | k) ∝ λke−λt e−λ = λke−λ(t+1).

That makes the posterior distribution f(λ | k) a
gamma distribution Gamma(λ, r) = Gamma(t +
1, k + 1) distribution since a Gamma(λ, r) distri-
bution has the density function

f(x) =
λrxr−1e−λx

Γ(r)
∝ xr−1e−λx.

We have a little notational problem right now since
we’re using the symbol λ in two ways. First, it’s
the parameter to the Poisson process with a distri-
bution; second, it’s one of the two parameters of
that distribution. From now on, I’ll decorate the
second use with subscripts somehow.

In this paragraph we have found that if λ had
a prior distribution which was exponential, which
in fact is a special case of a gamma distribution
Gamma(1, 1), then the posterior distribution was
also a gamma distribution Gamma(t+ 1, k + 1).

More generally, the prior distribution can be any
gamma distribution Gamma(λ0, r0). Then if k suc-
cesses are observed in time t, the posterior distri-
bution will also be a gamma distribution, namely,
Gamma(λ0 + t, r0 + k). Essentially, the first coor-
dinate keeps track of the total elapsed time while
the second keeps track of the number of events.

Thus, a family of conjugate priors for the Pois-
son process parameter λ is the family of gamma
distributions.

Selecting the prior distribution. How do
you choose the right prior out of the family
Gamma(λ0, r0), that is, what do you choose for
λ0 and r0?

One possibility is that you have a prior notion
for the mean µ and variance σ2 of λ. The mean for
a Gamma(λ0, r0) distribution is µ = r0/λ0 and its
variance is σ2 = r0/λ

2
0. These two equations can be

solved for r0 and λ0 to give

r0 = µ2/σ2 and λ0 = µ/σ2.

So, for example, you think that the rate of events
λ has a mean µ = 2 and a standard deviation of σ =
0.25. Then r0 = 100, and λ0 = 50, the equivalent
of observing 100 observations in 50 time units. The
density of Gamma(100, 50) is graphed below.

But what if you don’t have any prior informa-
tion? What’s a good know-nothing prior? That’s
like saying that we’ve had no successes in no time.
That suggests taking Gamma(0, 0) as the prior on
λ. Now Gamma(λ, r) describes a gamma distribu-
tion only when λ > 0 and r > 0, so Gamma(0, 0) is
only a formal symbol. Nonetheless, as soon as we
make an observation of k events in time t, with k
at least 1, we can use the rule developed above to
update it to Gamma(t, k) which is an actual dis-
tribution.

A point estimator for λ. As mentioned above,
the mean of a distribution on a parameter is a
commonly taken as a point estimator for that
parameter. Let the prior distribution for λ be
Gamma(λ0, r0). Then the prior estimator for λ

is µλ =
r0
λ0

. After an observation x with k

events in time t, the posterior distribution will be
Gamma(λ0 + t, r0 + k), so the posterior estimator

for λ is µλ|x =
r0 + k

λ0 + t
. If we took the prior to be
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the no-nothing prior of Gamma(0, 0), that implies
that posterior estimator for λ is just k/t, the rate
of observed occurrences.
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