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6 Normal distributions.

Bayesian statistics is fairly easy to use with normal
distributions when the variance is known. In that
case it turns out that the conjugate priors to use
for the distribution f(µ) on the mean µ for normal
distributions are normal distributions themselves.

It’s harder to deal with the case when both the
mean and and variance are unknown, but not in-
surmountable. We’ll start out with the easier case.

Normal distributions with known variances.
Let’s assume that we have a normal population
with an unknown mean µ and a known variance
σ2. Since σ2 is known, it’s just a constant, but µ
is unknown so it has a prior density f(µ) and a
posterior density f(µ|x).

If the prior distribution f(µ) on the mean µ
is the normal distribution Normal(µ0, σ

2
0), then

the posterior distribution f(µ|x) based on the ran-
dom sample x = (x1, . . . , xn) turns out also to
be a normal distribution. Let x be the sample
mean and σ2 the sample variance. We’ll leave out
the computations, but the posterior distribution is
Normal(µ∗, σ∗2) where

µ∗ = p0x+ q0µ0 and σ∗2 =

(
n

σ2
+

1

σ2
0

)−1

,

and where

p0 =
σ2
0

σ2/n+ σ2
0

and q0 = 1− p0 =
σ2/n

σ2/n+ σ2
0

.

Thus, the family of all normal distributions is a
conjugate family for µ.

Example. Let’s take an example. Suppose
we’re monitoring the production line of cans of
coffee. Suppose that we know from past experi-
ence that the mean content of cans is 16.0 oz.,
and the standard deviation is 0.1 oz. We can
take that to say that the prior distribution f(µ) is
Normal(µ0, σ

2
0) = Normal(16.0, 0.12) and that

σ2 is also 0.12. If σ0 is equal to σ, that simplifies

the formulas above to p0 =
n

n+ 1
and q0 =

1

n+ 1
.

Therefore, µ∗ =
nx+ µ0

n+ 1
, and σ∗2 =

σ2

n+ 1
.

In the coffee can example, that becomes

µ∗ =
nx+ 16.0

n+ 1
and σ∗2 =

0.01

n+ 1
.

Now let’s suppose 9 cans are tested and the re-
sulting sample mean is 16.1. Then

µ∗ = (9 · 16.1 + 16.0)/10 = 16.09,

and σ∗2 = 0.001, so σ∗ = 0.03. Thus, the poste-
rior distribution f(µ|x) is the normal distribution
Normal(16.09, 0.032).

We can use this posterior distribution to find
probabilities of intervals. For instance, we can ask
what the probability is that the mean µ is in the
interval [15.95, 16.05], and since we know the dis-
tribution of µ, we can answer the question. In-
deed, since 15.95 is 4.67 standard deviations be-
low the mean while 16.05 is 1.33 standard devia-
tions below the mean, the probability that µ lies
in [15.95, 16.05] is 0.091. And note, this answer
is an actual probability, not some confidence level,
power, or whatever.

Reparameterization of the conjugate family.
It’s much easier to see what you need to do to go
from the prior distribution to the posterior distribu-
tion if we change the parametrization of the family
of normal distributions from µ and σ2 into a differ-
ent one.
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Let’s let

α0 =
σ2

σ2
0

and β0 = α0µ0

α∗ =
σ2

σ∗2 and β∗ = α∗µ∗

so that the prior distribution for µ is
Normal(µ0, σ

2
0) = Normal( β0

α0
, σ

2

α0
) and the

posterior distribution for µ is Normal(µ∗, σ∗2) =
Normal(β

∗

α∗ ,
σ2

α∗ ). Then the equations above
involving µ∗, µ0, σ

∗2, σ2
0, p0, and q0, simplify to

α∗ = α0 + n

β∗ = β0 +
∑

xi

Thus, α keeps track of the number of observations
while β keeps track of their sum.

Naturally, a know-nothing prior would take α0 =
0 and β0 = 0. Although this know-nothing prior
doesn’t actually describe a distribution, it will once
one observation is made.
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