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Introduction to hypothesis tests. As stated
in our text, it is no an exaggeration to say that,
for better or worse, hypothesis testing is the most
widely used statistical toolin practice. Unfortu-
nately, it’s also one of the most misunderstood and
misused of tools.

In this introduction to hypothesis tests, we’ll only
consider hypothesis tests concerning the population
mean µ, but in later chapters we’ll look at hypoth-
esis tests that concern other parameters such as σ2.

For a hypothesis test, we assume the population
distribution comes from a known family of distri-
butions, but an unknown mean µ. We have under
consideration two hypotheses concerning the value
of µ. One hypothesis, H0, is called the null hypoth-
esis, the other, H1, is called the alternative hypoth-
esis. A test is designed to determine whether to
reject or not reject H0 at some prespecified confi-
dence level. (In practice, these tests are designed
to show that the null hypothesis is false.) After the
test is performed, there are two possible results, ei-
ther the data strongly contradict H0, in which case
we reject H0 and accept H1, or the data are con-
sistent with H0, in which case we don’t reject H0.
In the second case, not rejecting H0 does not mean
we accept H0 or reject H1 as the data may not be
strong enough for those conclusions.

There are different forms for these hypotheses.
Here are four of them. In each, µ0 is some specified
constant.

• Single population. The mean is µ0.

H0: µ = µ0; H1: µ 6= µ0.

This form will require a two-sided test.

• Single population. The mean is at most µ0.

H0: µ ≤ µ0; H1: µ > µ0.

This form will require a one-sided test.

Of course, there’s an analogous one-sided test
to see if the mean is at least µ0.

• Two populations. The means of the two pop-
ulations are the same.

H0: µ1 = µ2; H1: µ1 6= µ2.

This form will require a two-sided test.

• Two populations. The mean of the first popu-
lation is less than or equal to the mean of the
second population.

H0: µ1 ≤ µ2; H1: µ1 > µ2.

This form will require a one-sided test.

We’ll look at a couple of examples in the text.
The form of the hypothesis test for the mean is

usually to evaluate the sample mean X and deter-
mine whether X falls in a rejection region or its
complement, an acceptance region. The boundaries
between these two regions are called critical con-
stants. In a one-sided test, there is only one critical
constant and each of the regions is a half-infinite in-
terval. In a two-sided test, there are two constants,
the acceptance region is the interval between them,
and the rejection region is the union of two half-
infinite intervals.

A test for a fair coin. Let’s design a test for
a fair coin. We want a test that will reject or not
reject the null hypothesis H0 that the coin is fair,
and let’s choose the confidence level to be 95%. The
alternative hypothesis H1 is that the coin is not fair.

So, H0 is that p, which is µ, equals 1
2
, while H1

is that it doesn’t. Now, we know that for large n,

P (X − 1/
√
n ≤ p ≤ X + 1/

√
n) ≥ 0.95.

We developed this probability above when we were
looking at confidence intervals. We found a 95%
confidence interval for p was the interval

[X − 1/
√
n,X + 1/

√
n].
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Hypothesis tests are directly related to confidence
intervals, and we can turn this confidence interval
into this hypothesis test:

Reject the null hypothesis H0 that p = 1
2

in favor of the alternative hypothesis H1

if 1
2
/∈ [X − 1/

√
n,X + 1/

√
n].

In other words, we conclude, at the 95% confidence
level, that the coin is unfair if X is further from 1

2

than 1√
n
.

How big does n have to be to make this conclu-
sion? You get to decide, but n shouldn’t be too
small, or it won’t be possible to conclude the coin
is unfair. For instance, if you take n = 4, the test
says never says that the coin is unfair, since 1

2
is

never further from 1
2

than 1/
√

4. But suppose you
let n = 100. Then you could say the coin is un-
fair if X lies outside the interval [0.4, 0.6]. That’s a
pretty big interval, but with n = 10000, you could
say that the coin is unfair if X lies outside the in-
terval [0.49, 0.51]. Even so, at confidence level 95%,
you’d be wrong 5% of the time.

Type I and Type II errors, α-risks and β-
risks. Errors in hypothesis tests have these two
types.

A type I error occurs when the null hypothesis
holds, but we reject it. Hypothesis tests are de-
signed to control for type I errors. For instance,
if the test is designed at the 95% confidence level,
then when the null hypothesis actually holds, then
95% of the time we won’t reject it, but α = 5% of
the time we will, so make this type I error 5% of the
time. The probability of a type I error is denoted
α, and it’s sometimes called level of significance or
the α-risk. To reduce the α-risk, just design the
test to a higher confidence level.

A type II error occurs when the null hypothesis
does not hold, but we don’t reject it. Typically, we
can’t tell how often type II errors occur, because
the frequency depends on the unknown parameter,
and in the worst case they can occur 95% of the
time when the null hypotheses does not hold.

Let’s take an example to see this more clearly.
Suppose the population distribution is a Bernoulli
distribution with unknown parameter p. Last time
we saw how to construct a test for a fair coin. The
null hypothesis H0 was that p = 1

2
, while the alter-

native hypothesis H1 was that p 6= 1
2
. The hypoth-

esis test said

Reject the null hypothesis H0 that p = 1
2

in favor of the alternative hypothesis H1

if 1
2
/∈ [X − 1/

√
n,X + 1/

√
n].

In other words, we conclude, at the 95% confidence
level, that the coin is unfair if X is further from 1

2

than 1/
√
n.

To pin down this example, let’s take n = 10000.
Then we will reject H0 if |X − 1

2
| > 0.01.

Now, if p = 1
2
, then P (|X − 1

2
| > 0.01) is 0.05,

leading to a type I error.
But if p 6= 1

2
, then the probability of a type II

error,
β = P

(
|X − 1

2
| ≤ 0.01

)
depends on what the value of p is. That is, the
β-risk is actually a function that depends on the
parameter. For instance, if p is very close to 1

2
,

then this probability of a type II error will be very
close to 0.95. But if p is near 0 or 1, this probability
will be nearly 0.

Let’s compute the probability of a type II error
if p = 0.49. The distribution of X is almost normal
with a mean of p = 0.49 and a variance of

σ2
X

=
pq

n
= 1

10000
· 0.49 · 0.51 ≈ 1

40000
,

so a standard deviation of σX ≈ 1
200

= 0.005. Thus,
standardizing the condition, we have

P (0.49 ≤ X ≤ 0.51)

= P

(
0.49− 0.49

0.005
≤ X − 0.49

0.005
≤ 0.51− 0.49

0.005

)
= P (0 ≤ Z ≤ 4) ≈ 0.5.

In other words, a coin whose probability is heads is
0.49 will pass this fairness test half the time giving
50% type II errors.
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This function β that depends on the unknown
parameter θ, or rather the function that gives the
probability that H0 will not be rejected, is called
the operating characteristic function of the test, and
1 minus it, that is the function that gives the prob-
ability that H0 will be rejected, is called the power
function π(θ) of the test. From either one, you can
read off the α-risk and the β-risks for various values
of θ.

The observed level of significance, called the
P -value. Sometimes a hypothesis test just barely
ends up rejecting or accepting H0, and sometimes
it clearly rejects or accepts H0. The observed level
of significance, or P -value, is a way of recording the
information of near and far hits and misses. The
value P is the smallest level of α for which H0 is
accepted; any lower and H0 would be rejected.

Suppose we do a 95% confidence level test (so the
level of significance is α = 0.05). If H0 is just barely
accepted, then the observed level of significance is
P = 0.05 or slightly larger. But if H0 is just barely
rejected, then P is just slightly smaller than 0.05.
If the test accepts H0 without question, then the
P -value is higher, perhaps much higher than 0.05,
while if the test clearly rejects H0, then the P -value
is smaller than 0.05, perhaps nearly 0.
P -values are fairly easy to compute. The fair-

coin test is a special case of a two-sided hypothesis
test on µ. We’ll look at this in more detail in section

7.1. The test statistic for such tests is z =
x− µ0

σ/
√
n

when σ is known, or, when n is large and σ not

known, it’s z =
x− µ0

s/
√
n

, where s is the sample vari-

ance. This z has a standard normal distribution.
The null hypothesis is H0 : µ = µ0, and the alterna-
tive hypothesis is H1 : µ 6= µ0. The P -value is the
probability P (Z ≤ z |H0), which is 2(1 − Φ(|z|)),
which can be looked up in the standard normal ta-
ble.

Math 218 Home Page at
http://math.clarku.edu/~djoyce/ma218/
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