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Summary of the method of least squares.
We’ve already talked about the method of least
squares, which gives a “closest line to a bivariate
data set.” Given n data points

(x1, y1), (x2, y2), . . . , (xn, yn)

we want to find the linear function y = ax+b whose
graph is closest to the points in the sense that the
sum of the squares of the errors

E(a, b) =
n∑

i=1

(axi + b− yi)2

is least. Standard methods from calculus determine
what a and b have to be to minimize E(a, b).

For statistics, it’s most useful to express the an-
swer in terms of sample means x = 1

n

∑
xi and

y = 1
n

∑
yi and the statistics

Sxy =
∑

(xi − x)(yi − y)

=
∑
xiyi − nx y

Sxx =
∑

(xi − x)2

=
∑
x2i − nx2

Syy =
∑

(yi − y)2

=
∑
y2i − n y2

Then the least squares line that minimizes E(a, b)
has

a =
Sxy

Sxx

b = y − a x

In the late 18th century there were other lines
that competed for the title of “best line” for the

data. The theory of errors was a new field and the
first to explain why the least squares line should be
accepted as the best line was Lagrange, although
Gauss said after Lagrange’s publication that he de-
veloped it earlier. Lagrange developed what we now
call the normal distribution (or the Gaussian dis-
tribution) and used it to justify the method of least
squares. That’s what we’ll do next, but we’ll sim-
ply assume that the errors are normally distributed,
whereras Lagrange gave a theoretical reason why
they should be normally distributed. Also, our no-
tation and terminology is much more understand-
able. We have the benefit of a couple hundred years
of study to simplify the exposition.

The model for simple linear regression.
We’ll start with a probabilistic model for simple
linear regression. The adjective “simple” is used
here to indicate there is one independent variable
x and one dependent variable y. The next chapter
discusses multiple linear regression where there are
k independent variables but still only one depen-
dent variable.

We’ll also change the notation a bit. Rather
than y = ax + b, we’ll use y = β0 + β1x. The
βs are two parameters of the model. (In multiple
linear regression, there are k + 1 of these parame-
ters β0, β1, . . . , βk, and k variables x1, . . . , xk so that
y = β0 + β1x1 + · · ·+ βkxk.)

For the model, we have n independent observa-
tions Y1, . . . , Yn where

Yi = β0 + β1xi + εi.

Here, each xi is a constant, since we assume we can
specify the independent variables. The parameters
β0 and β1 are unknown. Each εi is an independent
random variable, called a random error, having a
normal distribution with mean 0 and variance σ2.
This σ2 is another unknown parameter. Note that
the variance for the error is assumed be the same
for each i.

The true regression line is y = β0 + β1x, but as
the βs are unknown, our job is to estimate them.
We’ll use the least squares line as the estimator for
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the true regression line. The least squares line has
the equation

y = β̂0 + β̂1x

where

β̂0 = y − a x

β̂1 =
Sxy

Sxx

Analysis of the model. As just mentioned, the
model we’re studying,

Yi = β0 + β1xi + εi,

has the random errors εi which are independent nor-
mal random variables each with mean 0 and vari-
ance σ2. It’s a linear model in the sense that the
three parameters β0, β1, and σ2 all appear in the
model to the first power.

Note that since the random variable Yi is the sum
of the constant term β0+β1xi and the random vari-
able εi. Since εi is Normal(0, σ2), therefore Yi is
Normal(β0 + β1xi, σ

2).
Once the data y1, . . . , yn have been collected we

can compute β̂0 and β̂1 by the formulas above.
They determine the line

y = β̂0 + β̂1x

which is called the least squares line, line of regres-
sion, or the regression line. It predicts fitted values
for each xi

ŷi = β̂0 + β̂1xi.

These differ from the actual data values yi by what
we can call the residuals

ei = yi − ŷi.

Of course, the datum yi comes from the experiment
and ei has to be computed from it.

sse, sst, ssr, and sample correlation coeffi-
cient r. The first three of these are just scaled
variances.

We’ve chosen the values of β̂0 and β̂1 to make the
value of

sse =
n∑

i=1

e2i

a minimum. This quantity is called the error sum
of squares (sse).

A related sum of squares is the total sum of
squares SST which measures the distance the yis
are from their average y. It’s given by the formula

sst =
n∑

i=1

(yi − y)2 = Syy.

The difference between these two sums of squares
has its own name, the regression sum of squares
ssr, and with some clever algebra we can find a
nice expression for it.

ssr = sst− sse

=
∑

(yi − y)2 −
∑

(ei)
2

=
∑

(yi − y)2 −
∑

(yi − ŷi)2

=
∑

(y2i − 2yiy + y2)−
∑

(y2i − 2yiŷi + ŷ2i )

=
∑

(−2yiy + y2 + 2yiŷi − ŷ2i )

=
∑

(−2yiy + 2yiŷi − 2ŷ2i + 2yŷi)

+
∑

(y2 − 2yŷi + ŷ2i )

It turns out that the first of these sums
∑

(−2yiy+
2yiŷi− 2ŷ2i + 2yŷi) is 0, but we’ll leave out the ver-
ification of that. And the second sum is actually
the sum of certain squares since

y2 − 2yŷi + ŷ2i = (y − ŷi)2

Therefore,

ssr =
∑

(y − ŷi)2.

Correlation. The sample correlation coefficient
r is defined as the sample covariance sxy divided by
the products of the sample standard deviations sx
and sy

r =
sxy
sxsy

.

2



See page 135, chapter 4. It can be shown (page
355) that its square r2 is the ratio

r2 =
ssr

sst
= 1− sse

sst
.

Furthermore r = β̂1sx/sy.
The importance of r2 is that it describes how

fraction of the total sum of squares is due to linear
dependence of y on x, the remainder is due to error
variance. Therefore, r2 is often called the coefficient
of determination and is used to measure “goodness
of fit.” If r2 is large (near 1) then there is a strong
linear dependence of y on x; if small (near 0) there
is little linear dependence of y on x.

Math 218 Home Page at
http://math.clarku.edu/~djoyce/ma218/
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