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We’ll look at maximum likelihood estimators in
section 15.1.

Likelihood functions for discrete distribu-
tions and maximum likelihood estimators.
The setting is that we have a family of distribu-
tions parametrized by θ, and we run an experiment
to get outcome values x = (x1, . . . , xn). From this
data we want to decide what the value of θ is. The
idea of the maximum likelihood estimator is that
the best value of θ is the one makes the probability
of the outcome the greatest.

In some cases, it’s pretty easy to see what the
maximum likelihood estimator is. Let’s take the
Bernoulli case where the unknown parameter of
success is p. (So, in this case the parameter θ is
p.) Suppose we get a sample x of n = 100 trials,
and 47 of them turn out success while 53 are fail-
ures. What value of p maximizes the probability

P (X = x | p)?

Intuitively, it’s p = 0.47, and that’s the maximum
likelihood estimator. We’ll verify that guess is cor-
rect after stating some general definitions and prin-
ciples.

The likelihood of a parameter θ for a given ran-
dom sample X = x, that is, X1 = x1, X2 =
x2, . . . , Xn = xn, is the probability

P (X = x | θ)

but it’s denoted
L(θ |x).

Thus, likelihood is not a probability, but the re-
verse of a conditional probability. That probability

can also be written as the product of values of the
probability mass function f as

f(x1 | θ)f(x2 | θ) · · · f(xn | θ).

Then the maximum likelihood estimator θ̂ for the
unknown parameter θ is just that value of θ that
has the highest probability of that outcome, that
is, has the greatest likelihood.

So in our Bernoulli example with a particular
outcome x having 47 successes and 53 failures,

L(p|x) = p47(1− p)53).

We want to find the value p̂ which maximizes
p47(1− p)53. We can use calculus to do that. Take

the derivative with respect to p,
d

dp
p47(1−p)53, and

set that derivative to 0 to find the critical points.
There is an easier way. The likelihood function
L(P |x) has its maximum at the same place as its
natural log lnL(P |x) does since the log function is
an increasing function, and it’s easier to take the
derivative of the log

d

dp
ln(p47(1− p)53)

=
d

dp
(47 ln p+ 53 log(1− p))

=
47

p
− 53

1− p

If we set that to 0 to find the critical points, and
simplify the equation, we get

47

p
=

53

1− p
,

so 47(1 − p) = 53p, and so p =
47

100
. Thus, the

maximum likelihood estimator is p̂ = 0.47 just as
we expected.

In more complicated cases, we can’t see right off
what value of θ will maximize the likelihood L(θ|x),
and we’ll have to resort to the method above where
we take logarithmic derivatives to find θ̂.
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Likelihood functions for continuous distribu-
tions. For continuous distributions, we can’t use
probability, because the probability of any particu-
lar outcome is 0. But we can use the density func-
tion. Thus, for a continuous distribution, the like-
lihood of a parameter θ for a given random sample
X1 = x1, X2 = x2, . . . , Xn = xn, also denoted
L(θ|x1, x2, . . . , xn) is the product of values of the
density function f as

f(x1 | θ)f(x2 | θ) · · · f(xn | θ).

(So, the same formula, but the symbol f now de-
notes a probability density function instead of a
probability mass function.)

The likelihood function for the normal distri-
bution and its maximum likelihood estima-
tors. Since the probability density function for a
normal(µ, σ) distribution is

f(x |µ, σ2) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
,

the likelihood function is

L(µ, σ2|x1, x2, . . . , xn)

=
n∏

i=1

1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)

=

(
1

σ
√

2π

)n

exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
Next, to find the maximum likelihood estimators

µ̂ and σ̂2 for the parameters µ and σ2, we just have
to find those values of µ and σ2 that maximize the
function L(µ, σ2|x1, x2, . . . , xn). We need to com-
pute its derivative to find the critical points so we
can find where the maximum occurs. But, since the
function L(µ, σ2) at the same places where its log
does, that is, where lnL(µ, σ2) does, we’ll use its
log instead, because its easier to find the derivative
of its log. Its log is

lnL(µ, σ2) = −n ln
√

2π−n
2

lnσ2− 1

2σ2

n∑
i=1

(xi−µ)2.

Here we have two parameters, µ and σ2, so we
need to set both derivatives of lnL(µ, σ2) to 0.
First, the derivative with respect to µ

∂

∂µ
lnL(µ, σ2) =

1

σ2

n∑
i=1

(xi − µ).

Set that to 0. Since
n∑

i=1

(xi − µ) = 0, therefore

the critical value for µ is
1

n
sumn

i=1xi, which is the

sample mean x. This is the only critical value, so
it maximizes L(µ, σ2). Therefore, the maximum
likelihood estimator µ̂ for the mean µ is the sample
mean x.

Second, the derivative with respect to σ2

∂

∂σ2
lnL(µ, σ2) = − n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ)2.

Set that to 0. We can simplify the resulting equa-
tion a bit to get

1

σ2

n∑
i=1

(xi − µ)2 = n

Therefore

σ2 =
1

n

n∑
i=1

(xi − µ)2

and, as we’re solving these equations simultane-
ously, we’ve already determined the solution has
µ = x, so we can rewrite that as

σ2 =
1

n

n∑
i=1

(xi − x)2.

Again, as this is the only critical value for σ2, it
maximizes L(µ, σ2). Therefore, the maximum like-
lihood estimator σ̂2 for the population variance σ2

is the statistic

σ̂2 =
1

n

n∑
i=1

(xi − x)2.
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As we discussed before, sometimes this statistic is
called the sample variance, but our text uses n− 1
in the denominator for the sample variance.

Math 218 Home Page at
http://math.clarku.edu/~djoyce/ma218/
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