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The main job of statistics is to make inferences,
specifically inferences bout parameters based on
data from a sample.

We assume that a sample X1, . . . , Xn comes from
a particular distribution, called the population dis-
tribution, and although that particular distribution
is not known, it is assumed that it is one of a fam-
ily of distributions parametrized by one or more
parameters.

For example, if there are only two possible out-
comes, then the distribution is a Bernoulli distri-
bution parametrized by one parameter p, the prob-
ability of success.

For another example, many measurements are as-
sumed to be normally distributed, and for a normal
distribution, there are two parameters µ and σ2.

Point estimation. The first kind of inference
that we’ll look at is estimating the values of pa-
rameters. A point estimator θ̂ of a parameter θ is
some function of the sample X1, . . . , Xn. Any func-
tion of a sample is called a sample statistic.

For example, for the Bernoulli distribution, a
typical estimator for p is the sample mean X, that
is, p̂ is often taken to be X.

For another example, for the normal distribution,
µ̂ is often taken to be X, and σ̂2 is often taken
to be the sample variance S2 = 1

n−1

∑
(Xi − X)2,

although sometimes σ̂2 is taken to be the sample
variance 1

n

∑
(Xi −X)2

Sometimes, there are many different choices for
estimators. To estimate the population mean µ,
besides (1) the sample mean X, you might instead
take (2) the midrange value 1

2
(Xmin +Xmax), or (3)

the median, or (4) just about any other statistic

that has “central tendencies.” Which of these is
best, and why?

Desirable criteria for point estimators. The
MSE. Well, of course, we want our point estima-
tor θ̂ of the parameter θ to be close to θ. We can’t
expect them to be equal, of course, because of sam-
pling error. How should we measure how far off the
random variable θ̂ is from the unknown constant θ?
One standard measure is what is called the mean
squared error, abbreviated MSE and defined by

MSE(θ̂) = E((θ̂ − θ)2)

the expected square of the error. If we have two dif-
ferent estimators of θ, the one that has the smaller
MSE is closer to the actual parameter (in some
sense of “closer”).

Variance and bias. The MSE of an estimator θ̂
can be split into two parts, the estimator’s variance
and a “bias” term. We’re familiar with the variance
of a random variable X; it’s

Var(X) = σ2
X = E((X − µX)2) = E(X2)− µ2

X .

Right now, though, our random variable is θ̂, so its
variance is

Var(θ̂) = E((θ̂ − E(θ̂))2) = E(θ̂2)− (E(θ̂))2.

The MSE(θ̂) is the sum of this variance and one
other component. Let’s see what that other com-
ponent is.

MSE = E((θ̂ − θ)2)
= E(θ̂2 − 2θ̂θ + θ2)

= E(θ̂2)− (E(θ̂))2 + (E(θ̂))2 − 2E(θ̂)θ + θ2

= Var(θ̂) + (E(θ̂))2 − 2E(θ̂)θ + θ2

= Var(θ̂) + (E(θ̂)− θ)2

The expression E(θ̂) − θ is called the bias of the
estimator θ̂.

Bias(θ̂) = E(θ̂)− θ.
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If Bias(θ̂) is positive that means that you expect
the estimator θ̂ to be too large, if negative, then
too small. From the computation above, we see
that the MSE is the sum of the variance of θ̂ and
the square of the bias of θ̂:

MSE(θ̂) = Var(θ̂) + (Bias(θ̂))2.

So, what makes a good estimator? We’ve only
seen a couple of measures of the goodness of an es-
timator, and people disagree just based on them.
The authors say the best estimator is the unbi-
ased one with the smallest variance. Others say
the smallest MSE is most important since it’s even
closer to the parameter. Others say that there are
other criteria that are more important than the
ones we’ve just discussed. Example 6.4 discusses
the sample variance S2 as an estimator for variance
σ2 for a normal distribution. Dividing by n − 1
leads to an unbiased estimator, but dividing by n
leads to an estimator with a much smaller MSE, at
least for small n, but as n increases the difference
between the MSE’s for the two estimators (the one
involving n−1 and the one involving n) approaches
0.

Standard error and estimated standard er-
ror of an estimator. The variance of θ̂ is one
measure of its error, and that’s often reported as
its square root, the standard deviation of θ̂, called
the standard error of the estimator θ̂, abbreviated
SE. Unfortunately, the actual value of this standard
error is not known because the parameters of the
distribution are unknown. But they can be esti-
mated and so can the standard error be estimated.
So, what’s usually reported is the estimated stan-
dard error.

An example. Suppose the population has two
unknown parameters µ and σ2, as is the case for
normal populations. The sample mean x is often
used to estimate µ. The standard deviation of X,
that is, the SE of the estimator X, is σ/n. But σ
is estimated by the sample standard deviation S.
Thus, the estimated sample error for X is S/

√
n.

This particular estimated sample error is so com-
monly used, it’s got its own name—the standard
error of the mean—abbreviated SEM.

The method of moments. There are other
ways of coming up with estimators. One is called
the method of moments. The idea is that to esti-
mate a moment µk of the population distribution,
just use the corresponding moment µ̂k of the sam-
ple. They’re analogous, anyway.

µk = E(Xk) while µ̂k =
1

k

n∑
i=1

Xk
i .

The method of moments goes further than that,
though. If what you want to estimate k param-
eters θ1, . . . , θk, and those parameters aren’t mo-
ments themselves, then find those parameters in
terms of the moments.

Example 6.6, page 202, shows how this is done
when a random sample is taken from a uniform dis-
tribution on an unknown interval [θ1, θ2]. Using the
method of moments, it turns out that

θ̂1, θ̂2 = µ̂1 ±
√

3(µ̂2 − µ̂2
1)

where µ1 = X = 1
k

∑
Xi, and µ2 = 1

k

∑
X2

i .
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