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Sample space. A sample space consists of a un-
derlying set Ω, whose elements are called outcomes,
a collection of subsets of Ω called events, and a
function P on the set of events, called a probability
function, satisfying the following axioms.

1. The probability of any event is a number in
the interval [0, 1].

2. The entire set Ω is an event with probability
P (Ω) = 1.

3. The union and intersection of any finite or
countably infinite set of events are events, and the
complement of an event is an event.

4. The probability of a disjoint union of a finite
or countably infinite set of events is the sum of the
probabilities of those events,

P (
⋃
i

Ei) =
∑
i

P (Ei).

From these axioms a number of other properties
can be derived including these.

5. The complement Ec = Ω−E of an event E is
an event, and

P (Ec) = 1− P (E).

6. The empty set ∅ is an event with probability
P (∅) = 0.

7. For any two events E and F ,

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ),

therefore

P (E ∪ F ) ≤ P (E) + P (F ).

8. For any two events E and F ,

P (E) = P (E ∩ F ) + P (E ∩ F c).

9. If event E is a subset of event F , then P (E) ≤
P (F ).

10. Statement 7 above is called the principle of
inclusion and exclusion. It generalizes to more than
two events.

P
( n⋃
r=1

Er
)

=
n∑
i=1

P (Ei)−
∑
i<j

P (Ei ∩ Ej)

+
∑
i<j<k

P (Ei ∩ Ej ∩ Ek)− · · ·

+ (−1)n−1P (E1 ∩ E2 ∩ · · · ∩ En)

In words, to find the probability of a union of
n events, first sum their individual probabilities,
then subtract the sum of the probabilities of all
their pairwise intersections, then add back the sum
of the probabilities of all their 3-way interections,
then subtract the 4-way intersections, and continue
adding and subtracting k-way intersections until
you finally stop with the probability of the n-way
intersection.

Random variables notation. In order to de-
scribe a sample space, we frequently introduce a
symbol X called a random variable for the sam-
ple space. With this notation, we can replace
the probability of an event, P (E), by the notation
P (X ∈ E), which, by itself, doesn’t do much. But
many events are built from the set operations of
complement, union, and intersection, and with the
random variable notation, we can replace those by
logical operations for ‘not’, ‘or’, and ‘and’. For in-
stance, the probability P (E ∪ F c) can be written
as P (X ∈ E but X /∈ F ).

Also, probabilities of finite events can be writ-
ten in terms of equality. For instance, the prob-
ability of a singleton, P ({a}), can be written as
P (X=a), and that for a doubleton, P ({a, b}) =
P (X=a or X=b).

One of the main purposes of the random variable
notation is when we have two uses for the same

1



sample space. For instance, if you have a fair die,
the sample space is Ω = {1, 2, 3, 4, 5, 6} where the
probability of any singleton is 1

6
. If you have two

fair dice, you can use two random variables, X and
Y , to refer to the two dice, but each has the same
sample space. (Soon, we’ll look at the joint distri-
bution of (X, Y ), which has a sample space defined
on Ω× Ω.

Random variables and cumulative distribu-
tion functions. A sample space can have any set
as its underlying set, but usually they’re related
to numbers. Often the sample space is the set of
real numbers R, and sometimes a power of the real
numbers Rn.

The most common sample space only has two el-
ements, that is, there are only two outcomes. For
instance, flipping a coin as two outcomes—Heads
and Tails; many experiments have two outcomes—
Success and Failure; and polls often have two
outcomes—For and Against. Even though these
events aren’t numbers, it’s useful to replace them
by numbers, namely 0 and 1, so that Heads, Suc-
cess, and For are identified with 1, and Tails, Fail-
ure, and Against are identified with 0. Then the
sample space can have R as its underlying set.

When the sample space does have R as its un-
derlying set, the random variable X is called a real
random variable. With it, the probability of an in-
terval like [a, b], which is P ([a, b]), can then be de-
scribed as P (a ≤ X ≤ b). Unions of intervals can
also be described, for instance P ((−∞, 3) ∪ [4, 5])
can be written as P (X < 3 or 4 ≤ X ≤ 5).

When the sample space is R, the probability
function P is determined by a cumulative distri-
bution function (c.d.f.) F as follows. The function
F : R→ R is defined by

F (x) = P (X ≤ x) = P ((−∞, x]).

Then, from F , the probability of a half-open inter-
val can be found as

P ((a, b]) = F (b)− F (a).

Also, the probability of a singleton {b} can be found
as a limit

P ({b}) = lim
a→b

(F (b)− F (a)).

From these, probabilities of unions of intervals can
be computed. Sometimes, the c.d.f. is simply called
the distribution, and the sample space is identified
with this distribution.

Discrete distributions. Many sample distribu-
tions are determined entirely by the probabilities of
their outcomes, that is, the probability of an event
E is

P (E) =
∑
x∈E

P (X=x) =
∑
x∈E

P ({x}).

The sum here, of course, is either a finite or count-
ably infinite sum. Such a distribution is called a dis-
crete distribution, and when there are only finitely
many outcomes x with nonzero probabilities, it is
called a finite distribution.

A discrete distributions is usually described in
terms of a probability mass function (p.m.f.) f de-
fined by

f(x) = P (X=x) = P ({x}).

This p.m.f. is enough to determine this distribution
since, by the definition of a discrete distribution,
the probability of an event E is

P (E) =
∑
x∈E

f(x).

In many applications, a finite distribution is uni-
form, that is, the probabilities of its outcomes are
all the same, 1/n, where n is the number of out-
comes with nonzero probabilities. When that is
the case, the field of combinatorics is useful in find-
ing probabilities of events. Combinatorics includes
various principles of counting such as the multipli-
cation principle, permutations, and combinations.
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Continuous distributions. When the cumula-
tive distribution function F for a distribution is
differentiable function, we say it’s a continuous dis-
tribution. Such a distribution is determined by a
probability density function f . The relation be-
tween F and f is that f is the derivative F ′ of F ,
and F is the integral of f .

F (x) =

∫ x

−∞
f(t) dt

Conditional probability and independence.
If E and F are two events, with P (F ) 6= 0, then
the conditional probability of E given F is defined
to be

P (E|F ) =
P (E ∩ F )

P (F )
.

Two events, E and F , neither with probability
0, are said to be independent, or mutually indepen-
dent, if any of the following three logically equiva-
lent conditions holds

P (E ∩ F ) = P (E)P (F )

P (E|F ) = P (E)

P (F |E) = P (F )

Bayes’ formula. This formula is useful to invert
conditional probabilities. It says

P (F |E) =
P (E|F )P (F )

P (E)

=
P (E|F )P (F )

P (E|F )P (F ) + P (E|F c)P (F c)

where the second form is often more useful in prac-
tice.

Expectation. The expected value E(X), also
called the expectation or mean µX , of a random
variable X is defined differently for the discrete and
continuous cases.

For a discrete random variable, it is a weighted
average defined in terms of the probability mass
function f as

E(X) = µX =
∑
x

xf(x).

For a continuous random variable, it is defined in
terms of the probability density function f as

E(X) = µX =

∫ ∞
−∞

xf(x) dx.

There is a physical interpretation where this
mean is interpreted as a center of gravity.

Expectation is a linear operator. That means
that the expectation of a sum or difference is the
difference of the expectations

E(X + Y ) = E(X) + E(Y ),

and that’s true whether or not X and Y are inde-
pendent, and also

E(cX) = cE(X)

where c is any constant. From these two properties
it follows that

E(X − Y ) = E(X)− E(Y ),

and, more generally, expectation preserves linear
combinations

E

(
n∑
i=1

ciXi

)
=

n∑
i=1

ciE(Xi).

Furthermore, when X and Y are independent,
then E(XY ) = E(X)E(Y ), but that equation
doesn’t usually hold when X and Y are not inde-
pendent.

Variance and standard deviation. The vari-
ance of a random variable X is defined as

Var(X) = σ2
X = E((X − µX)2) = E(X2)− µ2

X

where the last equality is provable. Standard devia-
tion, σ, is defined as the square root of the variance.

Here are a couple of properties of variance. First,
if you multiply a random variable X by a constant
c to get cX, the variance changes by a factor of the
square of c, that is

Var(cX) = c2 Var(X).
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That’s the main reason why we take the square
root of variance to normalize it—the standard de-
viation of cX is c times the standard deviation of
X. Also, variance is translation invariant, that is,
if you add a constant to a random variable, the
variance doesn’t change:

Var(X + c) = Var(X).

In general, the variance of the sum of two random
variables is not the sum of the variances of the two
random variables. But it is when the two random
variables are independent.

Moments, central moments, skewness, and
kurtosis. The kth moment of a random variable
X is defined as µk = E(Xk). Thus, the mean is
the first moment, µ = µ1, and the variance can
be found from the first and second moments, σ2 =
µ2 − µ2

1.
The kth central moment is defined as E((X−µ)k.

Thus, the variance is the second central moment.
A third central moment of the standardized ran-

dom variable X∗ =
X − µ
σ

,

β3 = E((X∗)3) =
E((X − µ)3)

σ3

is called the skewness of X. A distribution that’s
symmetric about its mean has 0 skewness. (In fact
all the odd central moments are 0 for a symmetric
distribution.) But if it has a long tail to the right
and a short one to the left, then it has a positive
skewness, and a negative skewness in the opposite
situation.

A fourth central moment of X∗,

β4 = E((X∗)4) =
E((X − µ)4)

σ4

is called kurtosis. A fairly flat distribution with
long tails has a high kurtosis, while a short tailed
distribution has a low kurtosis. A bimodal distribu-
tion has a very high kurtosis. A normal distribution
has a kurtosis of 3. (The word kurtosis was made
up in the early 19th century from the Greek word
for curvature.)

The moment generating function. There is a
clever way of organizing all the moments into one
mathematical object, and that object is called the
moment generating function. It’s a function m(t)
of a new variable t defined by

m(t) = E(etX).

Since the exponential function et has the power se-
ries

et =
∞∑
k=0

tk

k!
= 1 + t+

t2

2!
+ · · ·+ tk

k!
+ · · · ,

we can rewrite m(t) as follows

m(t) = E(etX)1 + µ1t+
µ2

2!
t2 + · · ·+ µk

k!
tk + · · · .

That implies that m(k)(0), the kth derivative of m(t)
evaluated at t = 0, equals the kth moment µk of
X. In other words, the moment generating function
generates the moments of X by differentiation.

For discrete distributions, we can also compute
the moment generating function directly in terms
of the probability mass function f(x) = P (X=x)
as

m(t) = E(etX) =
∑
x

etxf(x).

For continuous distributions, the moment generat-
ing function can be expressed in terms of the prob-
ability density function fX as

m(t) = E(etX) =

∫ ∞
−∞

etxfX(x) dx.

The moment generating function enjoys the fol-
lowing properties.

Translation. If Y = X + a, then

mY (t) = etamX(t).

Scaling. If Y = bx, then

mY (t) = mX(bt).

Standardizing. From the last two properties, if

X∗ =
X − µ
σ
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is the standardized random variable for X, then

mX∗(t) = e−µt/σmX(t/σ).

Convolution. If X and Y are independent vari-
ables, and Z = X + Y , then

mZ(t) = mX(t)mY (t).

The primary use of moment generating functions is
to develop the theory of probability. For instance,
the easiest way to prove the central limit theorem
is to use moment generating functions.

The median, quartiles, quantiles, and per-
centiles. The median of a distribution X, some-
times denoted µ̃, is the value such that P (X ≤ µ̃) =
1
2
. Whereas some distributions, like the Cauchy dis-

tribution, don’t have means, all continuous distri-
butions have medians.

If p is a number between 0 and 1, then the pth

quantile is defined to be the number θp such that

P (X ≤ θp) = F (θp) = p.

Quantiles are often expressed as percentiles where
the pth quantile is also called the 100pth percentile.
Thus, the median is the 0.5 quantile, also called the
50th percentile.

The first quartile is another name for θ0.25, the
25th percentile, while the third quartile is another
name for θ0.75, the 75th percentile

Joint distributions. When studing two related
real random variables X and Y , it is not enough
just to know the distributions of each. Rather, the
pair (X, Y ) has a joint distribution. You can think
of (X, Y ) as naming a single random variable that
takes values in the plane R2.

Joint and marginal probability mass func-
tions. Let’s consider the discrete case first where
both X and Y are discrete random variables.
The probability mass function for X is fX(x) =
P (X=x), and the p.m.f. for Y is fY (y) = P (Y=y).

The joint random variable (X, Y ) has its own p.m.f.
denoted f(X,Y )(x, y), or more briefly f(x, y):

f(x, y) = P ((X, Y )=(x, y)) = P (X=x and Y=y),

and it determines the two individual p.m.f.s by

fX(x) =
∑
y

f(x, y), fY (y) =
∑
x

f(x, y).

The individual p.m.f.s are usually called marginal
probability mass functions.

For example, assume that the random variables
X and Y have the joint probability mass function
given in this table.

Y
−1 0 1 2

−1 0 1/36 1/6 1/12
X 0 1/18 0 1/18 0

1 0 1/36 1/6 1/12
2 1/12 0 1/12 1/6

By adding the entries row by row, we find the the
marginal function for X, and by adding the entries
column by column, we find the marginal function
for Y . We can write these marginal functions on
the margins of the table.

Y fX
−1 0 1 2

−1 0 1/36 1/6 1/12 5/18
X 0 1/18 0 1/18 0 1/9

1 0 1/36 1/6 1/12 5/18
2 1/12 0 1/12 1/6 1/3

fY 5/36 1/18 17/36 1/3

Discrete random variables X and Y are indepen-
dent if and only if the joint p.m.f is the product of
the marginal p.m.f.s

f(x, y) = fX(x)fY (y).

In the example above, X and Y aren’t independent.
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Joint and marginal cumulative distribution
functions. Besides the p.m.f.s, there are joint
and marginal cumulative distribution functions.
The c.d.f. for X is FX(x) = P (X≤x), while the
c.d.f. for Y is FY (y) = P (Y≤y). The joint ran-
dom variable (X, Y ) has its own c.d.f. denoted
F(X,Y )(x, y), or more briefly F (x, y):

F (x, y) = P (X≤x and Y≤y),

and it determines the two marginal p.m.f.s by

FX(x) = lim
y→∞

F (x, y), FY (y) = lim
x→∞

F (x, y).

Joint and marginal probability density func-
tions. Now let’s consider the continuous case
where X and Y are both continuous. The last
paragraph on c.d.f.s still applies, but we’ll have
marginal probability density functions fX(x) and
fY (y), and a joint probability density function
f(x, y) instead of probability mass functions. Of
course, the derivatives of the marginal c.d.f.s are
the density functions

fX(x) =
d

dx
FX(x) fY (y) =

d

dy
FY (y)

and the c.d.f.s can be found by integrating the den-
sity functions

FX(x) =

∫ x

−∞
fX(t) dt FY (y) =

∫ y

−∞
fY (t) dt.

The joint probability density function f(x, y) is
found by taking the derivative of F twice, once with
respect to each variable, so that

f(x, y) =
∂

∂x

∂

∂y
F (x, y).

(The notation ∂ is substituted for d to indicate that
there are other variables in the expression that are
held constant while the derivative is taken with
respect to the given variable.) The joint cumula-
tive distribution function can be recovered from the
joint density function by integrating twice

F (x, y) =

∫ x

−∞

∫ y

−∞
f(s, t) dt ds.

Furthermore, the marginal density functions can
be found by integrating joint density function.

fX(x) =

∫ ∞
−∞

f(x, y) dy, fY (x) =

∫ ∞
−∞

f(x, y) dx

Continuous random variables X and Y are inde-
pendent if and only if the joint density function is
the product of the marginal density functions

f(x, y) = fX(x)fY (y).

Covariance and correlation. The covariance of
two random variables X and Y is defined as

Cov(X, Y ) = σXY = E((X − µX)(Y − µY )).

It can be shown that

Cov(X, Y ) = E(XY )− µXµY .

When X and Y are independent, then σXY = 0,
but in any case

Var(X + Y ) = Var(X) + 2 Cov(X, Y ) + Var(Y ).

Covariance is a bilinear operator, which means it is
linear in each coordinate

Cov(X1 +X2, Y ) = Cov(X1, Y ) + Cov(X2, Y )

Cov(aX, Y ) = a Cov(X, Y )

Cov(X, Y1 + Y2) = Cov(X, Y1) + Cov(X, Y2)

Cov(X, bY ) = b Cov(X, Y )

The correlation, or correlation coefficient, of X
and Y is defined as

ρXY =
σXY
σXσY

.

Correlation is always a number between −1 and 1.

Math 218 Home Page at
http://math.clarku.edu/~djoyce/ma218/
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