

The sample variance and the χ^2 distribution Math 218, Mathematical Statistics D Joyce, Spring 2016

The sample variance for a sample X_1, X_2, \ldots, X_n is sometimes defined as

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

but sometimes as

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

We'll use the first, since that's what our text uses.

In the same way that the normal distribution is used in the approximation of means, a distribution called the χ^2 distribution is used in the approximation of variances.

Let $Z_1, Z_2, \ldots, Z_{\nu}$ be ν independent standard normal variables. Then the sum of their squares

$$X = Z_1^2 + Z_2^2 + \dots + Z_{\nu}^2$$

has what is called a χ^2 distribution with ν degrees of freedom, written χ^2_{ν} , or more simply χ^2 when ν is understood. The letter ν is the Greek letter nu, and it is often used for the number of degrees of freedom.

The main purpose of a χ^2 distribution is its relation to the sample variance for a normal sample.

Suppose the sample X_1, X_2, \ldots, X_n is from a normal distribution with mean μ and variance σ^2 , then the sample variance S^2 is a scaled version of a χ^2 distribution with n-1 degrees of freedom

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

The details of the proof are given at the end of section 5.2 of the text.

The relation between χ^2 distributions and Gamma distributions, and Γ functions. Recall that the Gamma distribution is one of the distributions that comes up in the Poisson process, the others being the exponential distribution and the Poisson distribution. A Poisson process is when events occur uniformly at random over time at a constant rate of λ events per unit time. The time Tit takes for the r^{th} event to occur has what is called a Gamma distribution with parameters λ and r.

The gamma distribution also has applications when r is not an integer. For that generality the factorial function is replaced by the gamma function, where

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \, dt.$$

The gamma function and a related function called the beta function were invented by Euler in 1729. One of the main purposes of the gamma function is to generalize the factorial function to nonintegers. When r is a nonnegative integer,

$$r! = \Gamma(r+1)$$

so that $1 = 0! = \Gamma(1)$, $1 = 1! = \Gamma(2)$, $2 = 2! = \Gamma(3)$, $6 = 3! = \Gamma(4)$, etc. In fact, $\Gamma(x)$ is defined except when $x = 0, -1, -2, -3, \ldots$ It's also defined for complex numbers. The gamma function has several properties including these

$$\Gamma(x+1) = x\Gamma(x)$$

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}$$

$$\Gamma(x)\Gamma(x+\frac{1}{2}) = 2^{1-2x}\sqrt{\pi}\Gamma(2x)$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

It turns out that the χ^2 with ν degrees of freedom is gamma distribution with a fractional value for r, namely $r = \nu/2$, and $\lambda = 1/2$. That implies that the density function for a χ^2_{ν} distribution is

$$f(x) = \frac{x^{n/2-1}e^{x/2}}{2^{n/2}\Gamma(n/2)}, \text{ for } x \in [0,\infty),$$

its mean is $\mu = n$, and its variance is $\sigma^2 = 2n$.

Our text has a table of values for the χ^2 distribution, Table A.5 on page 676.

We'll work through example 5.5 on page 178.