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First Test Answers

Oct 2008

Scale. 88–98 A. 65–81 B. 41–57 C. Median 84.

Problem 1. On ordered fields. [20; 10 points each of two
parts] Recall that an ordered field consists of a field F along
with a subset P whose elements are called positive such that

1. F is partitioned into three parts: P , {0}, and N where

N = {x ∈ F | − x ∈ P}

the elements of N are called negative;

2. the sum of two positive elements is positive; and

3. the product of two positive elements is positive.

Carefully prove the any two of the following three properties
of ordered fields (your choice). You may use you know about
fields and the definition of ordered field above. For part b
you may also use the statement in part a (even if you didn’t
prove a), and for part c you may use the statements of both
part a and part b (even if you didn’t prove them).

There are many possible proofs of these statements. I’ll
give an example proof for each.
a. The product z = xy of a negative element x and a positive
element y is negative.

Let x be positive and y be negative. Then −y is positive
by condition 1 of the definition. Hence, by condition 3, the
product x(−y) is also positive. But that equals −xy. Since
−xy is positive, therefore xy is negative.
b. The product of two negative elements is positive.

Let x and y be negative. Then −x and −y are positive,
and so their product (−x)(−y) is also positive. But that
equals xy. Therefore xy is positive.
c. 1 is positive [hint: 1 · 1 = 1], and −1 is negative.

1 is not 0, so it is either positive or negative. If 1 were
negative, then by part b, 12 would be positive, but 12 = 1,
contradicting 1 being negative. Thus, 1 is positive.

Since 1 is positive, its negation is negative.
(Extra credit: prove all three.)

Problem 2. On rings. [24; 8 points each part] Consider
the ring M2(R) of all 2 by 2 matrices with entries in the real
numbers R.

a. Of course the square of both the identity matrix I and
the square of its negation −I equal I. Find another 2 × 2
matrix A whose square is I. (Such matrices are called square
roots of 1, or self-inverse matrices.).
(Extra credit: find all the square roots of 1.)

Let the matrix A be
[
a b
c d

]
. Then A2 is the matrix

[
a2 + bc ab + bd
ac + cd bc + d2

]
.

Thus, in order that A2 = I the following four equations need
to be satisfied.

a2 + bc = 1
b(a + d) = 0
c(a + d) = 0
d2 + bc = 1

We can divide the analysis into two cases: case 1 where
a + d 6= 0, and case 2 where a + d = 0.

Case 1. Since a + d 6= 0, from the second and third equa-
tion we see that b = c = 0. Then the first equation becomes
a2 = 1 and the fourth equation becomes d2 = 1. Hence,
any of the four combinations a = ±1, d = ±1 give solu-

tions. In particular, we have two new solutions
[
1 0
0 −1

]
and

[
−1 0
0 1

]
.

Case 2. In this case d = −a, and the second and third
equations are satisfied. The first and fourth both become
a2 +bc = 1. If b and c are any two real numbers whose prod-

uct is less than 1, we get a solution
[
±
√

1− bc b

c ∓
√

1− bc

]
.

b. Let S be the set of all these matrices. Is S a group under
addition? (Explain why or why not.)

No, for various reasons. For instance, the additive iden-
tity, the zero matrix 0 is not one of them. Also, it’s not
closed under addition.
c. Is S a group under multiplication? (Explain why or why
not.)

It does include the identity matrix I, and it’s closed under
inverses since every such matrix is its own inverse.
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But is it closed under products? Let A and B be such that
A2 = B2 = I. Does (AB)2 = I? That is, does ABAB = I?
That’s equivalent to AB = BA when A2 = B2 = I. So, do
all such matrices commute? No. Take two random matrices
from case 2, and they probably won’t commute. Also one
from case 1 and one from case 2 probably won’t commute.
(But any two from case 1 do commute.)

Problem 3. On groups. [20; 5 points each part] For each
of the following, state if it is a group or not. If not, explain
why not, but if so, you don’t have to give a reason why.
a. The set of 2 by 3 rectangular matrices with integers as
entries, where the binary operation is matrix addition.

Yes.
b. The set of all bijections from the set S = {1, 2, 3, 4}
to itself. (Recall bijections are also called one-to-one corre-
spondences. A bijection is simultaneously an injection, also
called a one-to-one function, and a surjection, also called an
onto function.)

I forgot to say what the binary operation was (I meant it
to be composition), so I accepted any justified answer.
c. The set of rational numbers Q where the binary operation
is

a ∗ b = a + b + ab.

Are the rational numbers closed under this operation?
Yes.

Is it associative? Yes.
Does it have an identity, that is, is there an element e such

that a ∗ e = e ∗ a = a for all a? Yes, namely e = 0.
Does it have inverses? That is, if a is any rational number,

does there exist an x such that a ∗ x = 0? Can we solve
a + x + ax = 0 for x? Yes, x = − a

1 + a
. But wait! If

a = −1, then such an x doesn’t exist.
Therefore, this is not a group. (But it’s almost a group.)

d. The set of real numbers R where the binary operation is
subtraction.

No, for various reasons. Subtraction has no identity, that
is, there is no number e such that x− e = e− x = x for all
x. Also, subtraction is not associative, (x− y)− z does not
equal x− (y − z).

Problem 4. On quaternions. [12] Recall that a quater-
nion a is an expression

x + yi + zj + wk

where x, y, z, and w are real numbers and i, j, and k are
formal symbols satisfying the properties

i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j,

and
ji = −k, kj = −i, ik = −j.

Of course the quaternions ±i,±j, and ±k are six square
roots of −1, but there are infinitely many more. Find at
least one more. [Hint: look for one where x = 0.]

Let a = yi + zj + wk. Then

a2 = (yi + zj + wk)(yi + zj + wk)
= y2i2 + yzij + ywik

+zyji + z2j2 + zwjk

+wyki + wzkj + w2k2

= −y2 + yzk − ywj

−zyk − z2 + zwi

+wyj − wzi− w2

= −y2 − z2 − w2

Thus, for a2 to be −1, we need −y2 − z2 −w2 = −1, that is
y2+z2+w2 = 1. Geometrically, that says the point (y, z, w)
in 3-space is on the unit sphere.
(Extra credit: find all the square roots of −1.)

The ones just found are all of them, but a proof of that
fact would have to consider the cases where x 6= 0 too.
Problem 5. On noncommutative rings. [24; 8 points
each part] We’ll make the set R × R into a ring by the
following definitions of addition and multiplication.

(a, b) + (c, d) = (a + c, b + d)
(a, b)(c, d) = (ac, ad + bc)

Note that addition is performed coordinatewise, so it’s a
group under addition. To show that it’s a ring, a few prop-
erties have to be verified indluding (1) multiplication is as-
sociative, (2) multiplication distributes over addition on the
left, and (3) multiplication distributes over addition on the
right.
a. Select one of the three and prove it. Your choice.

Associativity. Check that

((a, b)(c, d)) (e, f) = (a, b) ((c, d)(e, f)).

((a, b)(c, d)) (e, f) = (ac, ad + bc) (e, f)
= (ace, acf + ade + bce)

(a, b) ((c, d)(e, f)) = (a, b) (ce, cf + de)
= (ace, acf + ade + bce)

Multiplication distributes over addition on the left. Check
that (a, b) ((c, d) + (e, f)) = (a, b)(c, d) + (a, b)(e, f).

(a, b) ((c, d) + (e, f)) = (a, b) (c + e, d + f)
= (ac + ae, ad + af + bc + be)

(a, b)(c, d) + (a, b)(e, f) = (ac, ad + bc) + (ae, af + be)
= (ac + ae, ad + bc + af + be)
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(Extra credit: prove the others.)
b. What is the multiplicative identity for this ring?

We need to find (a, b) so that for all (x, y) we get
(a, b)(x, y) = (x, y), that is (ax, ay + bx) = (x, y). Thus, we
need both ax = x, and ay + bx = y. From the first require-
ment, a = 1. The makes the second requirement y + bx = y,
which simplifies to bx = 0. Therefore, b = 0. And (1, 0)
works as the multiplicative identity for this ring.
c. Show the ring is not commutative by finding two elements
that don’t commute.

Whoops. It is commutative. Everyone gets 8 points; 16 if
you said it was commutative.
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