Math Problem Solving Team

Department Lounge

10 Nov 2005, 6:30–8:00

B–1 problems from the Putnam Competition, 1995–2004

- 1995. For a partition π of $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, let $\pi(x)$ be the number of elements in the part containing x. Prove that for any two partitions π and π' , there are two distinct numbers x and y in $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ such that $\pi(x) = \pi(y)$ and $\pi'(x) = \pi'(y)$. [A *partition* of a set S is a collection of disjoint subsets (parts) whose union is S.]
- 1996. Define a **selfish** set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1, 2, ..., n\}$ which are *minimal* selfish sets, that is, selfish sets none of whose proper subsets is selfish.
- 1997. Let $\{x\}$ denote the distance between the real number x and the nearest integer. For each positive integer n, evaluate

$$F_n = \sum_{m=1}^{6n-1} \min\left(\left\{\frac{m}{6n}\right\}, \left\{\frac{m}{3n}\right\}\right).$$

(Here $\min(a, b)$ denotes the minimum of a and b.)

1998. Find the minimum value of

$$\frac{(x+1/x)^6 - (x^6+1/x^6) - 2}{(x+1/x)^3 + (x^3+1/x^3)}$$

for x > 0.

- 1999. Right triangle ABC has right angle at C and $\angle BAC = \theta$; the point D is chosen on AB so that |AC| = |AD| = 1; the point E is chosen on BC so that $\angle CDE = \theta$. The perpendicular to BC at E meets AB at F. Evaluate $\lim_{\theta \to 0} |EF|$.
- 2000. Let a_j, b_j, c_j be integers for $1 \le j \le N$. Assume for each j, at least one of a_j, b_j, c_j is odd. Show that there exist integers r, s, t such that $ra_j + sb_j + tc_j$ is odd for at least $\frac{4}{7}N$ values of j, $1 \le j \le N$.

2001. Let n be an even positive integer. Write the numbers $1, 2, ..., n^2$ in the squares of an $n \times n$ grid so that the k-th row, from left to right, is

$$(k-1)n+1, (k-1)n+2, \dots, (k-1)n+n.$$

Color the squares of the grid so that half of the squares in each row and in each column are red and the other half are black (a checkerboard coloring is one possibility). Prove that for each coloring, the sum of the numbers on the red squares is equal to the sum of the numbers on the black squares.

- 2002. Shanille O'Keal shoots free throws on a basketball court. She hits the first and misses the second, and thereafter the probability that she hits the next shot is equal to the proportion of shots she has hit so far. What is the probability she hits exactly 50 of her first 100 shots?
- 2003. Do there exist polynomials a(x), b(x), c(y), d(y) such that

$$1 + xy + x^{2}y^{2} = a(x)c(y) + b(x)d(y)$$

holds identically?

2004. Let $P(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_0$ be a polynomial with integer coefficients. Suppose that r is a rational number such that P(r) = 0. Show that the n numbers

$$c_n r, c_n r^2 + c_{n-1} r, c_n r^3 + c_{n-1} r^2 + c_{n-2} r, \dots, c_n r^n + c_{n-1} r^{n-1} + \dots + c_1 r^n$$

are integers.