Complements of Multivalued Functions

Stephen Fenner *
University of Southern Maine

Alan L. Selman $
State University of New York at Buffalo

Abstract

We study the class coNPMV of complements of
NPMV functions. Though defined symmetrically to
NPMV this class exhibits very different properties.
We clarify the complexity of coNPMV by showing
that, surprisingly, it is essentially the same as that
of NPMVYP . Complete functions for coNPMV are
exhibited and central complezity-theoretic properties
of this class are studied. We show that comput-
ing mazximum satisfying assignments can be done
in coNPMV, which leads us to a comparison of
NPMV and coNPMV with Krentel’s classes Max P
and MinP. The difference hierarchy for NPMV is
related to the query hierarchy for coNPMV. Fi-
nally, we examine a functional analogue of Chang
and Kadin’s relationship between a collapse of the
Boolean hierarchy over NP and a collapse of the
polynomial time hierarchy.

1. Introduction

Consider the complexity class NPMV of partial
multivalued functions that are computed nonde-

*Computer Science Department, University of South-
ern Maine, Portland, ME 04103. E-mail: fen-
ner@cs.usm.maine.edu. Supported in part by the NSF under
grants CCR 92-09833 and CCR 95-01794.

fDepartment of Mathematics and Computer Science,
Clark University, Worcester, MA 01610. E-mail:
fgreen@black.clarku.edu.

fComputer Science Department, Boston University,
Boston, MA 02215. E-mail: homer@cs.bu.edu. Supported
in part by the NSF under grant NSF-CCR-9400229.

$Department of Computer Science, 226 Bell Hall, State
University of New York at Buffalo, Buffalo, NY 14260. E-
mail: selman@cs.buffalo.edu. Supported in part by the NSF
under grant NSF-CCR-9400229.

TAbteilung Theoretische Informatik, Universitdt Ulm,
Oberer Eselsberg, 89069 Ulm, Germany. Email: thierauf@-
informatik.uni-ulm.de.

ITheoretische Informatik, Universitit Wiirzburg, Am
Exerzierplatz 3, D-97072 Wiirzburg, Germany. E-mail:
vollmer@informatik.uni-wuerzburg.de. Work supported by
the Alexander von Humboldt foundation under a Feodor Ly-
nen scholarship.

Frederic Green '
Clark University

Thomas Thierauf ¥

Steven Homer *
Boston University

Heribert Vollmer

Universitdt Ulm Universitdt Wiirzburg

terministically in polynomial time. As this class
captures the complexity of computing witnesses of
sets in NP, by studying this class, and more gener-
ally, by studying relations between such complex-
ity classes of partial multivalued functions, we di-
rectly contribute to understanding the complexity
of computing witnesses. It is well-known that a
partial multivalued function f belongs to NPMV
if and only if it is polynomial length-bounded and

graph(f) = {(z,y) | y is a value of f(x) } belongs
to NP.

Now consider the class coNPMV. We will give a
formal definition in the preliminary section below.
For now, let us state that a partial multivalued func-
tion f belongs to coNPMYV if and only if it is polyno-
mial length-bounded and graph(f) belongs to coNP.
Given this symmetry, graphs of functions in NPMV
are in NP while graphs of functions in coNPMYV are
in coNP, and given what we know about NP and
coNP, one might expect that coNPMV has essen-
tially the same complexity as NPMYV. Indeed, it is
easy to see that coNPMV = NPMYV if and only if
NP = coNP. However, the point of this paper is to
show that in many ways coNPMYV is a more power-
ful class than is NPMV. One can derive more infor-
mation from computing the complement of a func-
tion in NPMV than from computing the function.
For one example of this phenomena, we prove here
that coNPMYV is not included in FPN*™V unless the
polynomial hierarchy collapses. (This is an exten-
sion of a result of Fenner et al. [FHOS93].) Yet, it
is obvious that coNPMV can be computed in poly-
nomial time with one query to coNPMV. Thus, a
coNPMYV oracle provides more information than an
NPMYV oracle. This is surprising, for function or-
acles, just as set oracles, provide knowledge about
both their domains and their co-domains.

We will define many-one reductions between mul-
tivalued functions, (This will be a straightforward
adaptation of the many-one metric reducibility of
Krentel [Kre88].). In Section 3, we will consider

many-one complete functions for coONPMV.

In Section 4, we will see that functions such as
sat, defined so that a is a value of sat(yp) if and only
if a is a satisfying assignment of Boolean formula ¢,
which clearly is a complete function for NPMV, is
contained in coNPMV. Even the seemingly more
powerful function mazsat that gives the maximum
satisfying assignment of a formula is contained in
coNPMV. Note that mazsat in complete for FPNF.
However, we will see that NPMV or FPNF are not
contained in coNPMYV unless the polynomial time
hierarchy collapses. As a consequence, coONPMYV is
not closed under metric many-one reductions under
the same hypothesis.

As an upper bound on the complexity of
coNPMV, we show that, for any k& > 2,

coNPMV C NPMV(2) C NPMV (k) C

NPMV(k + 1) € NPMV (n°®) € NPMVYF,

where NPMV (k) is the k-th level of the difference
hierarchy for NPMV as defined by Fenner et al.
[FHOS93].

On the other hand, even though there is an
infinite hierarchy of complexity classes between
coNPMV and NPMV™ (the difference hierarchy
over NPMYV does not collapse unless the polynomial
time hierarchy collapses [FHOS93]), our results sug-
gest that the complexity of coNPMYV is essentially
the same as the complexity of NPMV™NF: we prove
in Section 5 that NPMV™Y = 71 0 coNPMV (where
7} is the projection function that maps a pair of
strings to its first component). As a consequence
we get that NPMV™F is the closure of coNPMV
under metric many-one reductions.

In Section 6, we show that if the difference hier-
archy for NPMYV collapses, then the NPMV oracle
hierarchy collapses. This is the functional analogue
of the well-known result by Chang and Kadin relat-
ing a collapse of the Boolean hierarchy over NP to
a collapse of the polynomial time hierarchy.

2. Preliminaries

We fix ¥ to be the finite alphabet {0,1}. Let <
denote the standard lexicographic order on ¥*. By
(-,-) we denote a pairing function on ¥* x X*.

We use the standard complexity classes as P and
NP for (nondeterministic) polynomial time, ¥} and
AP, the levels of the polynomial time hierarchy, and
NP(k), the levels of the Boolean hierarchy, for k >
1.

Let f be a relation on ¥* x ¥*. We will call f
a (partial) multivalued function from X* to X*. By

f(z) = y we denote that (z,y) € f and say that f
maps x to y. By set-f(x) we denote the set of out-
comes of f on z, set-f(z) = {y | f(z) = y}. The
graph of f is graph(f) = {(z,y) | f(z) » y}. The
domain of f, dom(f), is the set of where set- f(z)
is nonempty. We will say that f is undefined at z if
z ¢ dom(f). The domain of a class F of functions
is dom(F) = ¢ dom(f).

Given partial multivalued functions f and g, de-
fine g to be a refinement of f if dom(g) = dom(Jf)
and for all z, we have set-g(z) C set-f(z). Let F
and G be classes of partial multivalued functions.
Purely as a convention, if f is a partial multivalued
function, we define f €. G if G contains a refine-
ment of f, and we define F C,. G if for every f € F,
f €¢ G. This notation is consistent with our intu-
ition that F C. G should entail that the complexity
F is not greater than the complexity of G.

A transducer T is a nondeterministic Turing ma-
chine with a read-only input tape, a write-only out-
put tape, and accepting states in the usual manner.
T computes a value y on an input string « if there is
an accepting computation of T on z for which y is
the final content of T’s output tape. (In this case,
we will write T'(z) — y.) Such transducers compute
partial, multivalued functions. (As transducers do
not typically accept all input strings, when we write
“function”, “partial function” is always intended.
If a function f is total, it will always be explicitly
noted.)

The following classes of partial functions were
first defined by Book, Long, and Selman [BLS84].

e NPMYV is the set of all partial, multivalued
functions computed by nondeterministic poly-
nomial time-bounded transducers;

e NPSV is the set of all f € NPMV that are
single-valued;

o FP is the set of all partial functions computed
by deterministic polynomial time-bounded
transducers.

A function f belongs to NPMV if and only if it is
polynomially length-bounded and graph(f) belongs
to NP. The domain of every function in NPMV be-
longs to NP. An example is sat which maps Boolean
formulas to their satisfying assignments.

Fenner et al. [FHOS93] define the difference hi-
erarchy over NPMV as follows.

Let F be a class of partial multivalued functions.
A partial multivalued function f is in coF if there
exist ¢ € F and a polynomial p such that for ev-
ery x,

set-f(z) = TPU2D — set-g(x).

Let F and G be two classes of partial multival-
ued functions. A partial multivalued function h is
in F A G, respectively F V G, if there exist partial
multivalued functions f € F and g € G such that
for every =,

set-h(z) = set-f(z) Nset-g(x), respectively
set-h(x) = set-f(z) Uset-g(z).

Let F — G denote F A coG. Then, NPMV (k) is
the class of partial multivalued functions defined in
the following way:

NPMV(1) = NPMYV, and, for k > 2,
NPMV (k) NPMV — NPMV(k — 1).

Fenner et al. prove that for every k > 1, f €
NPMV (k) if and only if f is polynomially length-
bounded and graph(f) € NP(k).

In particular we are interested in the class
coNPMV. It follows that a function f belongs to
coNPMYV if and only if it is polynomially length-
bounded and graph(f) belongs to coNP. Observe
that the classes NPMV and coNPMYV satisfy the
nice symmetry that graphs of functions in the for-
mer class are in NP and of the latter class are in
coNP.

The class FPNY is the collection of partial func-
tions computed in polynomial time with oracles in
NP.

The primary new contribution of Fenner et al.
is the development of hierarchies of classes of func-
tions that access classes of partial functions as or-
acles. This development is based on the following
description of oracle Turing machines with oracles
that compute partial functions. Assume first that
the oracle is a single-valued partial function. Let L
be a symbol not belonging to the finite alphabet 3.
In order for a machine M to access a partial func-
tion oracle, M contains a write-only input oracle
tape, a separate read-only output oracle tape, and
a special oracle call state ¢. When M enters state g,
if the string currently on the oracle input tape be-
longs to the domain of the oracle partial function,
then the result of applying the oracle appears on
the oracle output tape, and if the string currently
on the oracle input tape does not belong to the do-
main of the oracle partial function, then the symbol
L appears on the oracle output tape. Thus, if the
oracle is some partial function g, given an input z
to the oracle, the oracle, if called, returns a value
g(z) if one exists, and returns L otherwise. (It is
possible that M may read only a portion of the ora-
cle’s output if the oracle’s output is too long to read

with the resources of M.) We shall assume, with-
out loss of generality, that M never makes the same
oracle query more than once, i.e., all of M’s queries
(on any possible computation path) are distinct.

If g is a single-valued partial function and M is
a deterministic oracle transducer as just described,
then we let M[g] denote the single-valued partial
function computed by M with oracle g.

2.1 Definition. [FHOS93] Let f and g be multi-
valued partial functions. f is Turing reducible to g
in polynomial time, f <Y g, if for some determin-
istic oracle transducer M, for every single-valued
refinement g' of g, M[g'] is a single-valued refine-
ment of f.

Fenner et al. prove that <} is a reflexive and
transitive relation over the class of all partial mul-
tivalued functions.

Let F be a class of partial multivalued func-
tions. FP7 denotes the class of partial multi-
valued functions f that are <F-reducible to some
g € F. FPT (respectively, FP71°8) denotes the
class of partial multivalued functions f that are
<P-reducible to some g € F via a machine that,
on input z, makes k adaptive queries (respectively,
O(log |z|) adaptive queries) to its oracle.

In particular, these definition templates define
such classes of multivalued partial functions as
FPNPMV "and NPMVNPMV

We will use the following generalization of the
many-one metric reducibility of Krentel [Kre88] in
order to discuss complete functions for classes of
multivalued functions.

2.2 Definition. Given partial multivalued func-
tions f,g : ¥* — X* we say f is metric many-
one reducible to g, or symbolically, f <V g, if there
are functions ti,t2 € FP such that for any x,
ta(z, got1(x)) is a refinement of f(x). That is, these
functions have the same domain and set-tz2(x,g o
t1(z)) C set-f(z).

If, in addition, we have set-ta2(z,g o t1(x)) =
set-f(x), we call it a strong metric many-one re-
duction, denoted by f <% g,.

The motivation underlying this definition is that,
given a value of g(z), one can compute in polyno-
mial time a value of f(x). In the case of a strong
reduction, one gets all values of f(x) when varying
over all values of g(x). Obviously, f <P g implies
f<hg.

The classes that we have been considering relate
in interesting ways optimization problems. In or-
der to capture the complexity of optimization prob-
lems, Krentel [Kre88] defined the complexity classes

MaxP and MinP as the functions computable by
taking the maximum, respectively minimum, over
sets of feasible solutions of problems in NP. Fur-
ther, Krentel extended these classes to hierarchies
of classes of optimization functions [Kre92]. Krentel
defined these functions using the notion of a met-
ric Turing machine, which we now recall. Consider
nondeterministic polynomial time Turing machines
that print an output value on every path such that
with every inner node of the computation tree ei-
ther the function min or the function max is as-
sociated (for the classes MinP and MaxP, resp.).
Thus, metric Turing machines define (total) func-
tions from input words to integers. Since all the
considered function classes in this paper are par-
tial, we extend the metric Turing machine just de-
fined by allowing the machine to output a special
symbol | which denotes that the computation on
the corresponding path ends with an undefined re-
sult. We extend the min and max functions in the
obvious way: define max(z, 1) = max(Ll,z) = =
and min(z, 1) = min(Ll,z) = z, for all z (includ-
ing L itself). Vollmer and Wagner [VW93, VW95)
gave a detailed structural examination of Krentel’s
hierarchy. Here, we just define class MaxP using
an operator-characterization from [VW95]. MinP
is defined analogously.

h € MaxP <«—

af, g e FP: h(zr) = max

z,Y).
0<y<g(z) f(@:9)

3. Functions Complete for coNPMV

NPMYV is precisely the class of functions that com-
pute witnesses for NP sets in the following sense.
For any NP set L there exist a set A € P and
a polynomial p such that for all x, we have z €
L <= 3y € x?2D) : (z,y) € A. Any y such that
(z,y) € A is called a witness for xz (with respect
to A). Clearly, there is a NPMV function f such
that set-f(x) is exactly the set of witnesses for z.
On the other hand, any NPMV function f defines
a NP set as the set of all z such that there exists
an output of f on z. In other words, dom(f) € NP.
As a consequence of this discussion, we see that
dom(NPMV) = NP.

Next, we extend the notion of a witness to X5.
For any Y% set L there exist a set B € coNP
and a polynomial p such that for all z, we have
reL <<= Jyexrle): (z,y) € B. Ay such that
(z,y) € B is called a witness for x (with respect
to B). What function class captures the computa-
tion of witnesses for X% sets? Since £f = NPT,

certainly witnesses can be computed in NPMVNF,
However, we will see below that a seemingly weaker
class already suffices to do so.

Let us consider set L again. Since B € coNP,
there is a set A € P such that (z,y) € B<=Vz €
¥P(2) : (z,y,2) € A. Now consider the following
multivalued function f.

flx)y—~ye€ el e— 3, ¢ npleh . (z,y,2) & A.

Clearly, f € NPMV and set-f (z) is precisely the set
of nonwitnesses for x; that is, the set of witnesses
for 2 equals P(#) —set-f(x). Hence, coNPMV can
compute witnesses for sets in 5. Conversely, for
any coNPMV function f, we have dom(f) € X5.
This is because, for any z, z € dom(f) <= Jy €
P2 : y € set-f(z). Thus, coNPMV is precisely
the class of functions that computes witnesses for
P sets. As a consequence, we have the following
proposition.

3.1 Proposition. dom(coNPMV) = ¥5.

Witnesses of X% complete sets can give rise to
complete functions for coNPMV. Consider, for ex-
ample, the satisfiability problem QBF, for Boolean
formulas with two quantifiers. Let ¢ be a Boolean
formula in the variables x = (z1,...,7;) and y =
(y1,---,y)- Then we define

p(x,y) € QBF, < IxVy:p(x,y) =1

Let F3 be the multivalued function that computes
witnesses, i.e., partial assignments x = (1, ...,zx),
for QBF, formulas ¢ as above.

3.2 Theorem. F, is <P -complete for coNPMV.

Proof. We have argued already that F» €
coNPMV. Let f be any coNPMV function. There
is a NP transducer M and a polynomial p such that
for all z, we have set-f(z) = £2(2) —set-M (z). We
show how to compute a y € set-f(x) from F»(p,),
for an appropriately constructed formula ¢,.

Define a machine M’ on input z as follows. First,
M’ guesses ay € YPUzD Then, M' simulates M on
input . If M outputs y on the simulated path,
then M’ rejects. Otherwise, M’ accepts.

We have to define the reduction functions ¢; and
to as required in Definition 2.2. Function #; is
Cook’s reduction applied to z with M’ as the under-
lying machine. This will give a Boolean formula ¢,
that, intuitively, describes the work of M’ on in-
put . The variables of ¢, can be partitioned into
two parts:

® say vyi1,...,Yk, that are used to describe that
M’ guesses a y € XP{2) and

e say z1,...,2], that are used to describe the sub-
sequent simulation of M.

Furthermore, from any setting of the variables
Y1,---,Yr Of Y, we can reconstruct in polynomial
time the y € £7(#D) guessed by M’. This is done by
function ¢,.

Let us fix a setting of the variables y1, ...,y and
let y € £7(2D) be the corresponding string guessed
by M'. Then we have

7yk,21,...,z1) =1

M' accepts on all paths following y

Va1, 210 @u(y1,---

—
<~ vy ¢&set-M(x)
= f(@)—y,

and hence, t2(z, F» o t1(z)) computes a refinement

of f(x). O

A crucial point in the above proof is that Cook’s
reduction maintains witnesses. That is, from a
given assignment for the constructed formula ¢,
one can recover a corresponding path of the non-
deterministic machine. Thus any ¥} complete set
sharing this property with QBF,, defines a coNPMV
complete function in an analogous way. Note more-
over that there is a one-one correspondence between
witnesses and assignments (that is computable and
invertible in polynomial time), so that the above
proof in fact shows that F» is complete for coNPMV
under <P -reductions.

As an example, consider the following set Ly.
For any NPMYV function f and some polynomial p
such that f maps strings of length n to strings of
length p(n), x € Ly if z € dom(f) and

Ty € $eD/2 vy ¢ 3PU2D/2 . f(z) b o,

In other words, string ¥ is not a prefix of an output
of f(x).

Clearly, for every f € NPMV, we have that Ly
is in 3. Thus, in particular, taking f = sat, Lgg
is in X%, is even ¥4 complete and has the above
mentioned property. We conclude that the corre-
sponding witness function, pre(sat), is complete for
coNPMV, where

pre(sat)(p) =y <

o € SAT and y is not a prefix of

a satisfying assignment of ¢.

3.3 Theorem. pre(sat) is <P -complete for

coNPMV.

4. Properties of coNPMV

NPMYV is closed under <P _-reductions, but not un-
der <P _reductions; in fact, it is possible to have
g € NPMV and f<P g but f be nonrecursive. (For
example, define f to map x to two values, one of
them solves the halting problem on x, i.e., is from
{0, 1}, the second value is constant 10. Then clearly
f is not recursive, but the constant function 10 is
a refinement of f in NPMV.) However, NPMV is
closed under this reduction in a weaker sense, de-
fined below.

4.1 Definition. A class C is c-closed under re-
ducibility <,. if, g € C and f <, g implies f €. C.

It is immediate from this definition that NPMV
is c-closed under <P _reductions. One might suspect
that this same fact holds for coNPMV. However,
it is quite unlikely that coNPMYV is c-closed under
this reducibility: otherwise, since sat € coNPMV
and sat is complete for NPMV, we would get that
NPMV C. coNPMV. But this seems to be very un-
likely as the following extension of a result of Fenner
et al. [FHOS93] shows.

4.2 Theorem. NPMV C coNPMV <=
NPMV C. coNPMV <= NP = coNP.

Proof. We cycle through the implications. The first
implication is trivial. For the second, let L € NP.
Define function

() = 1 ifzxel
XL - 1 otherwise .

Then we have xr € NPMYV, and hence, by as-
sumption, xr € coONPMV. Therefore, graph(xz) €
coNP, which implies that L € coNP since z €
L < (z,1) € graph(xz).

Now suppose that NP = coNP and let f €
NPMV. Then graph(f) € NP, and therefore in
coNP by assumption. Define function g as g(z) —
y <= (x,y) & graph(f), where y € £71#) for some
polynomial p. Then we have ¢ € NPMV and
set-f(x) = BPI#) — set-g(x). O

4.3 Corollary. coNPMV is c-closed under <F -
reducibility if and only if NP = coNP.

We observe that the proof of Theorem 4.2
shows also that NPSV C coNPMV < NP =
coNP, even though it is fairly easy to see that
NPSV,, the class of all total NPSV functions,
is contained in coNPMV. We also note that
Theorem 4.2 extends to higher levels of the dif-
ference hierarchies over NPMV and NP, that

is NPMV(k) C coNPMV(k) <= NPMV(k) C.
coNPMV (k) <= NP(k) = coNP(k). By a result of
Kadin [Kad88], a collapse of the Boolean hierarchy
implies a collaps of the polynomial time hierarchy.
Hence, there is a whole hierarchy between coNPMV
and NPMV™F.

4.4 Theorem. For all k > 2, we have
coNPMV C NPMV(2) C NPMV (k) C
NPMV(k + 1) € NPMV(n¢M) € NPMVYF,

Furthermore, all of the inclusions are strict unless
the polynomial time hierarchy collapses.

Proof. It remains to show the last inclusion. Let
f € NPMV(n®M). Then the graph of f is in
NP(n®W), which is known to be equal to PNP[log]
[Wag90]. Obviously, f can be computed by an
NPMV algorithm with access to a PNF[log] ora-
cle: simply guess an output of f and querying
its graph check that the guess is correct. Thus,
NPMV(n®W) ¢ NPMVP" log] ¢ NPMVNP. O

It follows from Theorem 4.2 that we can have the
situation that a function that is complete for some
class, like sat for NPMV, is in coNPMYV without the
corresponding class being contained in coNPMV.
This seems to happen again for mazsat, the func-
tion that maps a Boolean formula to its lexicograph-
ically largest satisfying assignment. Fenner et al.
[FHOS93] show that mazsat € NPMV(2). In fact,
it is even in coNPMV. However, we will show that
the corresponding classes, namely MaxP or FPNF
are unlikely to be contained in coNPMV.

4.5 Theorem. mazsat € coNPMV.

Proof. Consider an NPMV machine M that, on in-
put of a formula ¢, guesses an assignment y for ¢. If
y does not satisfy ¢, then M outputs y. Otherwise,
if y does satisfy ¢, M guesses another assignment
y' > y. If y' also satisfies ¢, M outputs y, otherwise
M rejects.

M outputs every assignment except the max-
imum satisfying one (if there is one). Hence
mazsat € coNPMV. |

Krentel [Kre92] showed that FPNF = ppMaxPll],
Since FPN™MV — FPNY and mazsat is complete for
MaxP, we have that FPNPMV ¢ FpeoNPMVI] Tt
is, polynomially many queries of a FP function to
NPMYV can be replaced by one query to coNPMYV.
Hence, coNPMV seems to be a more powerful class
than NPMV. We will give more evidence for this in
the next section.

It is tempting to conclude from the proof of The-
orem 4.5 that MaxP C coNPMV. However, this is
unlikely.

4.6 Corollary. MaxP C coNPMV <= MinP C
coNPMYV <= NP = coNP.

Proof. If MaxP C coNPMV, then NPMV C.
MaxP C coNPMV, and therefore NPMV C,
coNPMV. But by Theorem 4.2, this implies
NP = coNP. Conversely, if NP = coNP, then
NPMVNF = NPMYNPOONP — NPMV. This im-
plies MaxP C NPMYV, and since the hypothesis
also implies NPMV = coNPMV, that MaxP C
coNPMV. O

We conclude this section with an observation re-
garding the relationship between MaxP and NPMV.
First, note that trivially NPSV C MaxP N MinP,
since the output of an NPSV function is both the
minimum and the maximum. Similarly, NPMV C,
MaxPNMinP. The more interesting question is
whether these inclusions are strict. This is quite
likely.

4.7 Theorem. MaxP C NPMV <= MinP C
NPMV <= NP = coNP.

Proof. If NP = coNP, then NPMV = FPNP
[Sel94], thus especially NPMV = Max P = MinP.

Now suppose MaxP C NPMV (the case for
Min P is analogous). Let L € coNP. Define

0 ifzel
1 otherwise .

@y = {

Then f € MaxP and hence, by assumption, in
NPMV. Since z € L if and only if f(z) = 0, we
have L € NP. O

The last two results relativize: analogous results
hold for higher levels of the NPMV hierarchy and
Krentel’s min/max hierarchy [FHOS93, VW95].
For the relativized version of Theorem 4.7 one has
to use techniques from Krentel [Kre92] and Vollmer
and Wagner [VW95].

5. A Characterization of coNPMV

As we have already seen in the preceding section,
coNPMYV seems to be a more powerful class than
NPMYV. This is somewhat surprising in light of
the aforementioned symmetry in the definitions of
coNPMYV and NPMYV by their graphs.

The following theorem shows that coNPMV is
in fact very close to NPMV™Y . This is surprising

as well, as we have already seen in Corollary 4.4
that there is a hierachy of function classes between
coNPMV and NPMV™F.

Let 73 denote the projection function that maps
a pair of strings to its first component. By 73 o
coNPMV we denote {73 o f | f € coNPMV }.

5.1 Theorem. NPMV™' =7 o coNPMV.

Proof. The right to left containment follows from
Corollary 4.4 and the fact that the projection of
any NPMV™ function is still in NPMV™Y | hence
7} 0 coONPMV C NPMV™Y,

For the other direction, let f € NPMVNY. By
a standard argument there is a polynomial ¢ and a
predicate R € P such that for any z and y € %92

f@) =y =

3z € 97D vy € 29020 . R(z,y, 2, w).
Define f' such that for any z and y, z € 9D

(@) = (y,2) <= Ywe i) Rz, y,zw).

So =R witnesses that f' € coNPMV. But f(z) =
73 o f'(z), which shows that f € 73 ocoNPMV. 0O

There is a counterintuitive facet to Theorem 5.1.
The reason why it is likely that coNPMYV is a proper
subclass of NPMV™F is not because outputs of
coNPMYV functions give too little information, but
rather that they give too much. We can compute
an arbitrary NPMV™NF function simply by throw-
ing away part of the output of a coNPMYV function.
This is what the projection operator accomplishes,
and it is most likely necessary.

Applying Theorem 5.1, many properties of
NPMV™ now carry over to coNPMV. In the previ-
ous section we have shown function F> and pre(sat)
complete for coNPMV. Since the projection func-
tion is in FP, we get that those functions are com-
plete for NPMV™NF as well.

5.2 Corollary. NPMVNY is the c-closure of
coNPMV under <P -reducibility and the closure of
coNPMV under <P _-reducibility.

—Ssm

In particular, we get

5.3 Corollary. FPNPMVIL — FPNPMVYP] o
FPCcoNPMV _ FPNPMVNP — FPNPNP.

Observe by contrast that FPNFMV — ppNP —
FPMnP = FPMaP 5o coNPMV and NPMV de-
fine different A-levels of the functional polynomial
hierarchy.

Fenner et al. [FHOS93] have shown that
NPMV(2) € FPNMV «— 32 — AP Note that in
contrast for the corresponding language classes we
have NP (k) C PNP for all k. We can now improve
the result of Fenner et al.

5.4 Corollary. coNPMV C FPNPMV «— 57 —
AR,

Proof. If 5 = A%, then

cONPMV C FPeNPMV _ ppNPMV™ _ ppXi
— FPA — ppNP — ppNPMV

where the last equality is Theorem 1 in [FHOS93]
and the second follows from the relativized version
of the same theorem. Conversely, if coNPMV C
FPYPMV | then dom(coNPMV) C PNP = A2 5o
that X5 C A%, O

5.5 Corollary. For any k > 1, we have

NPMVNP C FPCONPMV[l] C FPCONPMV[k] C

FPeONPMV[k+1] — ppcoNPMV _ FPNPNP
Furthermore, all inclusions are strict unless the
polynomial time hierarchy collapses.

Proof. It remains to show the strictness of the
inclusions. Suppose FPNPMVIL c NpMVNF.
This is equivalent to FPNPMYV™" 1l ¢ NPMVYNP,
which implies P¥:[l C %5 But then T =
¥, and PH = 8. For the other inclusions,

suppose FPCONPMV[k] — FPCONPMV[k—l—l] . Then

FPNPMV™PIk] _ ppNPMVYP[k+1] By a theorem of

Fenner et al. [FHOS93], this implies that FP¥3[K] =
FP>: %+ which, by a relativization of Kadin’s the-
orem [Kad88], implies that the polynomial hierar-
chy collapses.

O

Thus we see, combining Theorems 4.4 and 5.5,
that all classes of the difference hierarchy over
NPMV are included in the query hierarchy over
coNPMYV, in fact already in its first level. There
are (under reasonable assumptions) no inclusions
in the opposite direction. Concerning the relation-
ship between the query hierarchy over NPMV and
the difference hierarchy over NPMV, we know from
Fenner et al. [FHOS93] that all classes of the first
hierarchy are included in certain classes of the sec-
ond hierarchy. Any inclusion in the opposite di-
rection implies coNPMV C FPNPMV, which again
implies a collapse of the polynomial time hierarchy,
by Corollary 5.4.

6. Relationships Between the Func-
tional Difference and Polynomial
Time Hierarchies

Chang and Kadin [CK90] showed that if the
Boolean hierarchy over NP collapses to the k**
level, then the polynomial hierarchy collapses to the
k** level of the Boolean hierarchy over NPNF: if
NP(k + 1) = NP(k), then PH = NPNP(k). Tt is
a simple consequence of known results that a sim-
ilar connection exists for the corresponding func-
tional hierarchies, namely NPMV (k) and XMV, =
NPMVZe-1,

6.1 Theorem. Foranyk > 1, if NPMV(k+1) =
NPMV (k) then EMV3 = NPMVNP (k).

Proof. NPMV(k + 1) = NPMV (k) is equivalent
with NP(k + 1) = NP(k) [FHOS93], which implies
¥% = NP (k) [CK90] (relativized). Since X7, =
Yh <= EMV4 = EMV,, [FHOS93], we get that
YMV;3; = NPMVY (k). o

Since NPNP(k) € PNP™"IH 4 consequence of
Chang and Kadin’s theorem is that if NP(k + 1) =
NP(k), then 32 = PNP™"[#] (indeed, they prove this
directly in their paper before treating the stronger
result). The functional analogue of such a collapse

would be ¥XMV3; = FPNPMVT K] or, equivalently,
YMV; = FPNPMVIEL We cannot expect this as
a direct consequence of Theorem 6.1, since the dif-
ference and query hierarchies are not intertwined in
this context. Nevertheless, such an analogous result
does hold. To see this, we have to modify the proof
of the Chang and Kadin theorem.

6.2 Theorem. IfNPMV(k+1) =NPMV(k) then
YMV; = NPMV o FpeoNPMVIk—1]

Proof. In order to explain how Chang and Kadin’s
proof gives this result, we recall some of their defi-
nitions, with some minor modifications in notation
(for greater detail, we refer the reader to their pa-
per [CK90]). Denote the <P -complete language
for NP (k) (respectively coNP(k)) as Lnp(x) (respec-
tively Leonp(r)). For example, Lyp(1) = SAT and
Lxpa) = {(x1,22) | 21 € SAT and 2, € SAT}.
Since, by hypothesis, NP(k) = coNP(k), it follows
that Lxpy <h, Leonp(k)- The basic idea underly-
ing the Chang and Kadin proof is that such a reduc-
tion induces a reduction from an initial segment of
SAT to an initial segment of SAT. This is done in-
ductively via the notion of a “hard sequence”, which
is a j-tuple which, together with a <P -reduction

from NP (k) to coNP(k), can be used to find a <P -
reduction from NP(k — j) to coNP(k — j).

6.3 Definition. Let LNP(k) an LCONP(k) via
some polynomial time function h. Then we call
(1™, 21,...,2;) a hard sequence with respect to h
for length m of order j, if j = 0 or if the following
conditions hold.

1.1<j<k-1,
2. |z;| < m,
3. IL'jESAT,

4. (1™, 2q,...,2j_1) is a hard sequence with re-
spect to h, and

5. for all yy, ...,y € =™ (where £ =k — j),
o1 0 h({y1, .-, Ye, 25, ..., 21)) € SAT.

A hard sequence is called mazimal if it cannot
be extended to a hard sequence of a higher order.
In this case the order of the sequence j is said to be
maximal.

We can now outline the proof. Chang and
Kadin’s Lemma 3 [CK90] states that, given a maxi-
mal hard sequence for an appropriate (polynomially
bounded) length, an NP machine can recognize an
initial segment of the canonical complete language
for NPNP| That is, with the aid of such a sequence
we can replace a £8 machine with an NP machine.
Thus it suffices to find a maximal hard sequence to
collapse the NP’s of a ¥XMV3 = NPMV>> machine.

Our principle observation is this: Hard sequences
of any given order can be obtained by a single query
to a coNPMYV oracle. This can easily be seen as
follows. Define the function H : 1t x N — X*
such that H(1™,j) — (1™, zy,...,z;) if and only
if (1™, 21,...,2;) is a hard sequence for length m
of order j. It follows from Definition 6.3 that the
set of hard sequences is in coNP [CK90]; hence
graph(H) € coNP, so that H € coNPMV. There-
fore, we can obtain a maximal hard sequence for the
appropriate polynomial length m = p(|z|) by query-
ing a coNPMV oracle for the value of H(m,j) for
j varying from 1 to k — 1. We then feed the result-
ing maximal hard sequence, along with the original
input z, to an NPMV machine which can, via the
induced reduction from coNP to NP, collapse the

NP oracles in an NPMVNF™ computation. O

Acknowledgment

We appreciate the contributions of J. Ramachan-
dran to the results presented here.

References

[BLS84]

[CK90]

[FHOS93]

[Kadss]

[Kre88]

[Kre92]

[Pap84]

[Ram94]

[Sel94]

[VW93]

[VW95]

R. Book and T. Long and A. Sel-
man Quantitative relativizations of com-
plexity classes SIAM J. on Comput.,
13(3):461-487, August 1984.

R. Chang and J. Kadin. The boolean
hierarchy and the polynomial hierar-
chy: a closer connection. In Proceed-
ings of the 5th Annual Conf. on Struc-
ture in Complexity Theory, pages 140-
153, New York, 1990. IEEE Computer
Society Press.

S. Fenner, S. Homer, M. Ogihara, and
A. Selman. On using oracles that
compute values. In Proc. 10th An-
nual Symp. on Theoret. Aspects of Com-
puter Science, Lecture Notes in Com-
puter Science, volume 665, pages 398—
407. Springer-Verlag, 1993.

J. Kadin. The polynomial time hier-
archy collapses if the Boolean hierar-
chy collapses. SIAM J. on Comput.,
17(6):1263-1282, December 1988.

M. Krentel. The complexity of optimiza-
tion problems. J. Comput. System Sci.,
36:490-509, 1988.

M. Krentel. Generalizations of OptP to
the polynomial hierarchy. Theor. Com.
Sci., 97:183-198, 1992.

C. Papadimitriou. On the complexity of
unique solutions. J. of the ACM, 31:392—
400, 1984.

J. Ramachandran. The polynomial time
function hierarchy. Technical Report
no. 94-50, Department of Computer and
Information Sciences, Ohio State Uni-
veristy, 1994.

A. Selman. A taxonomy of complexity
classes of functions. J. Comput. System
Sci., 48(2):357-381, 1994.

H. Vollmer and K. Wagner. The com-
plexity of finding middle elements. In-
ternational Journal of Foundations of
Computer Science, 4:293-307, 1993.

H. Vollmer and K. Wagner. Complexity
classes of optimization functions. Infor-
mation and Computation, 120:198-219,
1995.

[Wag87]

[Wag90]

K. Wagner. More complicated questions
about maxima and minima, and some
closures of NP. Theoret. Comput. Sci.,
51:53-80, 1987.

K. Wagner. Bounded query classes.
SIAM J. Comput., 19:833-846, 1990.

