Name:
Circle your instructor's name:
Hill Joyce Pendharkar

Math 120 Calculus I
Final Exam

December 2015
This is a closed-book, closed-notes test. Calculators are not allowed. Please turn off your cellphone and any other electronic equipment during the test.

Leave your answers as expressions such as $e^{2} \sqrt{\frac{\sin ^{2}(\pi / 6)}{1+\ln 10}}$ if you like. Show all your work for credit. Be sure that your proofs and computations are easy to read. Points for each problem are in square brackets.

1. [14; 7 points each part] Evaluate the following limits if they exists, but if a limit doesn't then explain why.
a. $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}+3 x-2}$
b. $\lim _{x \rightarrow 0^{+}} x \ln x$
2. [12; 4 points each part] Let $f(x)=\frac{x}{1+x^{2}}$.
a. Determine where $f^{\prime}(x)=0$.
b. Determine the intervals on which f is increasing and the intervals on which f is decreasing.
c. For which values of x are there local maxima, and for which values of x are there local minima.
3. [21; 7 points each part] Differentiation. Do not simplify your answers. Use parentheses properly.
a. Evaluate $\frac{d}{d x} \ln (1+\sqrt{3 x})$.
b. Let $f(t)=t^{2} \sec t$. Find $f^{\prime}(t)$.
c. Let $F(x)=\int_{-1}^{x} e^{t^{2} / 2} d t$. Find $F^{\prime}(x)$. (Hint: do not try to evaluate the integral.)
4. [8] Determine the function $f(x)$ that has the same derivative as $g(x)=4 e^{x} \cos x$ but whose value at $x=0$ is $f(0)=9$.
5. [8] Suppose that $f(x)$ is a differentiable function, and that $f(3)=6$ and $f(8)=5$. Explain why the derivative cannot always be positive. Mention appropriate theorem(s) to back up your explanation.
6. [14; 7 points each part] The second derivative of a function f is $f^{\prime \prime}(x)=\frac{x^{2}-1}{x^{2}+1}$ a. For what values of x does f have an inflection point?
b. Determine the intervals on which f is concave upward, and the intervals on which it is concave downward.
7. $[14 ; 7$ points each part] Evaluate the following integrals. Note that the first one is an indefinite integral, and the second one is a definite integral. Show your work for credit.
a. $\int(4 \sqrt{x}+\cos x) d x$
b. $\int_{1}^{4}\left(x^{3}-e^{x}\right) d x$
8. [12] The altitude of a triangle is increasing at a rate of $2 \mathrm{~cm} / \mathrm{min}$ while the area of the triangle is increasing at a rate of $1 \mathrm{~cm}^{2} / \mathrm{min}$. At what rate is the base of the triangle changing when the altitude is 5 cm and the area is $25 \mathrm{~cm}^{2}$? (Be sure to show your work.)

$\# 1 .[14]$	
$\# 2 .[12]$	
$\# 3 .[21]$	
$\# 4 .[8]$	
$\# 5 .[8]$	
$\# 6 .[14]$	
$\# 7 .[14]$	
$\# 8 .[12]$	
Total	

